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Preface
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In the last 25 years, the science and technology of composite materials have
experienced a period of substantial development.The initial goal was to
provide light, strong, and stiff raterials for the aerospace industry. That was
met by the introdyction of polymer matrix composites with continuous fiber
reinforce nent, id with certain discontinuous reinforcements. Such mate-
rials arenow routinley used not only in aerospace, but also in numerous
other applic tions, e.g., in automobile and construction industries.

Meanwhile, -omposite materials have been introduced, or are expected to
serve, in many~tbefunctions which cannot be fulfilled by conventional
materipls, particularly in extreme environments. Accoldingly,'the research
focus fas been broadened to include not only new polymer systems, but also
meta4tnermetallic4and ceramic -watrimaterials. This has brought forth
a number of new problems in fabrication and processing, and in analysis of
composite material behavior and properties.
The latter set of problems is usually approached by various micromechani-

cal techniques. In recent years, their scope has been expanded from
prediction of overall properties of elastic, perfectly bonded systems, to
include problems associated with inelastic deformation of the phases,
debonding at interfaces, and growth of distributed damage. Many familiar
aspects of mechanical behavior, such as fracture, fatigue, compressive
strength and buckling have been reexamined and adapted for application to
the new material systems. - ...

This volume contains a selection of recent work by leading researchers in
micromechanics that was presented at the IUTAM Symposium on Inelastic
Deformation of Composite Materials at Rensselaer. The Symposium was
made possible by the generous support of AFOSR, ARO, NSF, IUTAM and
RPI. Thanks are due to the sponsors, and to the local organizing committee
for their support and work on behalf of the Symposium. Special thanks are
due to Christine Stephenson for her coordination of the local arrangements,
and for her contribution to the preparation of this volume.

George J. Dvorak
Troy, New York

June 1990
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Composite Materials with Interphase:
Thermoelastic and Inelastic Effects

Zvi Hashin1

Department of Mechanical Engineering

and Applied Mechanics

University of Pennsylvania

Philadelphia, PA

ABSTRACT

The effect of thin interphase between

constituents of a composite material is

described in terms of imperfect interface

conditions which involve interface parameters.

Elastic, viscoelastic and elastoplastic

interphases are considered and their effect on

the mechanical properties of composites is

evaluated on the basis of the composite

cylinder/spheres assemblage models and the

generalized self consistent scheme

approximation.

INTRODUCTION

The effective properties of a composite
material depend on two kinds of information:

the properties of the constituents and the

1 On leave of absence from Tel Aviv
University, Tel Aviv, Israel
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interface geometry. The interface imposes

certain restrictions on the deformations and

stresses in the constituents which are called

interface conditions. The concept of
interface and interface conditions is of
course a simplified description of a complex
microscopic state in the region where the
constituents come in contact, but introduction
of such details into analysis of a composite
material would lead to prohibitively difficult
problems. Therefore investigation of the
effect of the nature of the interface on
composite material properties should be

divided into two stages. In the first stage
the nature of the interface is translated into

interface conditions, possibly on the basis of
micromechanics of the interface region, and in
the second stage the composite is analyzed
subject to the derived interface conditions.

The classical interface conditions assume
that displacements and tractions are

continuous at the interface. This will be
referred to as perfect interface conditions
and every other kind of interface condition
will be called imperfect. Unless we have

reason to be concerned with surface tension
interface traction continuity must be retained
for reasons of equilibrium. It is the

displacement continuity requirement which is
abandoned when the interface is imperfect and
to understand the underlying physics let us

q... 
'.
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imagine that there is a thin region (:ompared

to typical constituent dimensions such as

fiber diameters) between the constituents,

called the interphase, which has properties
which are very different from those of the

constituents. The interphase may be a thin
layer of another material introduced by design
or by chemical interaction of the

constituents, or it may be a region containing

many small defects such as pores or cracks.
The case of interest is an interphase with

stiffness much smaller than that of an

adjoining constituent. This will be the case
when the interphase material stiffness is very

small or when micro-defects reduce stiffness

considerably. The deformations of such an

interphase, though thin, may be of the order

of the deformations of stiffer constituents.

The interphase deformation is the difference

between displacements of adjoining

constituents. If the interphase, by virtue of

its small thickness, is idealized to become a
surface - i.e. the interface, then this

displacement difference becomes an interface

displacement discontinuity.

If the interphase is elastic the simplest
assumption is that normal and tangential

displacement discontinuities are proportional

to associated traction components. Thus with

respect to a local orthogonal system of axes

n,s,t originating at some point on the

S ... ..... .
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interface, Fig. 1, where n is normal direction

and s,t are tangential directions we describe

elastic imperfect interface conditions by the

relations

T)= T(2 ) D[ J x = ~u) _ u(2)
n n nun] un n n

TO) = T(2) D[un] [us] = u(1) - u(2)

TO) = T(2) =Dt[u] [ut] = u(1) - ut

on St2, where D., D, and D, are spring
constant type parameters which will be called

interface parameters. It is seen that

infinite values of these parameters imply
vanishing of the interface displacement jumps
and therefore perfect interface conditions.

At the other extremity, zero values imply

vanishing of the interface tractions and

therefore disbond of the adjoining media. Any

finite positive values of the interface
parameters define an imperfect interface.

A special case of (1) is D. - w which
implies normal bond and imperfect shear bond.

If furthermore D, = Dt = 0 there is no shear
bond and the case "s referred to as free

sliding. The case of imperfect shear bond

only was considered by Mal and Bose (1975) and

Benveniste (1985) for the case of spherical

particle elastic composites. Mura et al.

(1985) have analyzed the axisymmetric problem

of a spheroidal inclusion with interface

4.,.',*. N
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conditions of free sliding.

The more general interface conditions of
type (1) with imperfect normal and shear bond

were used by Achenbach and Zhu (1989, 1990)
for numerical analysis of periodic fiber

arrays and by Hashin (1990a,b,c) for analysis
of thermoelastic properties of fiber and
spherical particle composites and the elastic
problem of the spherical inclusion.

INTERFACE CONDITIONS AND INTERPHASE

Elastic Interface

It should be noted that the interface
conditions (1) have been introduced into the
literature as a convenient assumption without
examination of their general validity or
origin. It has been shown in Hashin
(1990a,bc) that such interface conditions are
indeed valid for fibers of circular cross
section coated with transversely isotropic

interphase and for spherical inclusions which

are coated with isotropic interphase, provided

that interphase thickness and stiffness are

very much smaller than diameters and
stiffness, respectively, of fibers and
inclusions. It has been shown on the basis of

detailed model analysis that for fibers the

interface parameters are given by
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Dn = (ki + GTi)/8

Ds = GTi/8  (2)

Dt = GAi/8

where n is radial outward direction to fiber
surface and s,t are transverse and axial

tangential directions, respectively, t is axis

of transverse isotropy, 8 is interphase

thickness, ki, Gm, GM are interphase

material transverse bulk modulus, transverse

shear modulus and axial shear modulus,

respectively, which are supposed to be much

smaller than fiber elastic moduli

Note that D, in Hashin (1990a) was given
with a factor 2. This is a matter of

interpretation of the displacement continuity

due to axial shear. The present

interpretation seems to be preferable.

For spherical inclusions with isotropic

interphase it was shown in Hashin (1990b,c)

that

D = (Ki + 4G)/8n =D GI -T 18(3)
D s = D t = Gi/8

where K1 is isotropic bulk modulus. Note that

for isotropic interphase (2) become the same

as (3).

We can derive (2,3) in very simple
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fashion without recourse to model analysis.

Furthermore, the derivation is not restricted

to fibers of circular cross sections nor to

spherical inclusions but is valid for

generally cylindrical fibers and inclusions of

any (smooth) shape. Recall that the interface

is a very thin layer which is loaded by

assummedly smooth distribution of normal and

tangential tractions, equal in magnitude on

both sides. The variation of interphase

stresses with r, distance normal to interphase

bounding surfaces, can therefore be neglected.

It follows that if the interphase is

homogeneous the strains are also independent

of r. Therefore the displacement jumps

produced by the interphase are given by

[us) 2e4i)8 (4)

[ut] 2ems~

t°,nt

where index i indicates interphase. Since e.

is the normal derivative of u. the first of

(4) is obvious. Establishment of the

remaining two, for curved interphase, is based

on neglect of the small number 8/a with

respect to 1, where a is radius of curvature

of fiber or inclusion.

At constituent/interphase interfaces each



11

of the tangential interphase strains ess! e(i)
ss, t t

must be equal to its constituent counterpart.

Assuming that particles and fibers are very
much stiffer than the interphase material the

tangential interphase strains can be neglected

relative to the normal interphase strain.

Thus

ss =  nn tt tt n (

where strains with no index are in fibers or

particles. Assuming isotropic interphase it

follows from the elastic stress-strain law of

the material that

nn = (K. + 4G /3)
nn I '3  Enn

a(') = 2G. e(') (6)
115 i ns

a(') = 2G ei
fit i nt

These stresses are the normal and tangential

tractions. Expressing them in terms of (4)

and using (1), the result (3) follows at once.

Derivation of (2) is entirely analogous.

There is in fact no difficulty to find the

interfac constants for interphase which is

orthotropic with respect to the n,s,t axes.

For more complicated interphase anisotropy,

when normal and shear strain/stress are no

longer decoupled, the interface conditions
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will no longer have the form (1) but each

traction component will be linearly related to

all displacement jumps in the n,s,t coordinate

system.

Work on the effect of interphase on the

properties of composite materials has often
been concerned with variability of interphase

properties in the normal direction; see e.g.

Sideridis (1988). The present approach can be

readily adapted to this case. The interphase

stresses remain constant through the thickness

for the same reasons given above but since

interphase stiffness now varies through the

thickness the strains will behave similarly.

The relations (4) are now replaced by

[Un] = Eo Enn(r) dr

[us] = 2 ens (r) dr (7)

[ut] = 2 jJ Ent(r) dr

Assuming transversely isotropic interphase

coating of a fiber we then have from the

elastic stress-strain relations

1 dr

1 d0 (8)
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1f 80 dr
t 0 GAi(r

with obvious specialization to isotropic

interphase.

Finally, we consider the case of thin

interphase with no stiffness restrictions in

which case the tangential strains (5) are no

longer negligible with respect to normal

strain. To be specific we consider the case

of isotropic interphase adjoining an isotropic

constituent. Expressing interphase normal

stress in terms of interphase strains and

using (4) and the left part of (5) the normal

interface condition now becomes

[U1 + 2pi T[UnJ/ 8 = I
n8 Ki + 4Gi/3 E2(T - Vi n

(1 - 'V2)Vi (2) + (2) ) (9)
201 - PIT k ss t

There is of course no difficulty to derive

similar relations for anisotropic interphase

and/or anisotropic constituents. It is seen

that (9) is no longer of the form (1) while

the shear interface conditions remain

unchanged.

Examination of (9) reveals that the

normal displacement jump is of the order of

interphase thickness multiplied by the ratio

.4.
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of stress to interphase stiffness. For

interphase stiffness which is not small

(compared to constituent stiffness) this ratio

will be a very small number which implies very

small normal displacement jump, a situation
which could be adequately represented by

normal displacement continuity - thus perfect

interface condition. Similar considerations

apply to shear interface conditions. For

isotropic interphase normal and shear

stiffness will be of the same order, thus

normal and shear interface conditions will

both be either perfect or imperfect. However,

in the case of an anisotropic interface it is

possible to have shear stiffness which is very
much smaller than normal stiffness. This may

lead to perfect normal interface condition and

imperfect shear interface conditions.

If the interphase is such that perfect

interface conditions are appropriate, (9) or

its anisotropic counterparts are still useful
for purpose of determination of the stresses

in the interphase.

Viscoelastic Interphase

We consider the case of linear

viscoelastic isotropic interphase and make the

usual assumption that the bulk modulus K is

time independent and thus the viscoelastic

effect is confined to shear and is

characterized by the relaxation modulus Gi(t)
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and the associated creep compliance g,(t).

Then the viscoelastic counterpart of (1,3) is

given by

Tn(t) = Dn(t)[un(O)] +

ft Da (
Do- n(t - t ) 4 [un ~t ] t

Ts(t) = Ds(t)[us(O)J +
ta

fo DS(t - t-) s-,- fu,(t')]dt'

(10)
Dn(t) = [Ki H(t) + 4Gi(t)]I8

Ds(t ) = Gi(t)/S

where H(t) is the Heaviside function. For

applications it is useful to introduce the

Laplace Transform (T) of (10) which is

Tn = PDn[un] Ts = pDs[usj
a a (11)

pDn [K1 + 4 p GiJ/a pDs= pGi/8

where indicates LT and p is the transform

variable. It follows from Tauberian theorems

for LT that the initial and final values of

the interface functions D.(t) and D,(t) are

Dn(O/) [Ki + 4Gi(O/0) 18

(12)
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Ds(0/) = Gi(0/0)I8

Often G1(o) is so small that it may be assumed

to vanish. In this event the final shear

interface conditions reduce to free sliding.

The above interface functions are

appropriate for quasi-state effects of

relaxation and creep. In the case of steady
state oscillations it is convenient to use

complex moduli. Retaining the assumption of

elastic Y. the complex interface parameters

are

B = w) Ki +T 4i(&W)I/s
(13)

where w is frequency, t = V'T-and Zi(&w) is

the complex shear modulus of the interphase.

Elastoplastic Interphase

In this case the interphase may develop

plastic yielding. The situation is more

complex than the previous ones considered

because of the nonlinear stress interaction

and it is therefore not clear if it is

possible to develop interface conditions of as

general a nature as before. Here the

development of the interface conditions for

elastoplastic interphase will be confined to a

specific geometrical model in the context of

unidirectional fiber composites to be
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considered below.

THERMOELASTIC EFFECTS

Thermoelastic properties of fiber

composites and of particulate composites have

been analyzed in Hashin (1990a,b) on the basis

of the composite cylinder assemblage (CCA)

model for fiber composites, the composite

spheres assemblage (CSA) model for particulate

composites and the generalized self consistent

scheme (GSCS) for both kinds of composites.

It will be recalled that the CCA and CSA are

described by filling out space with

geometrically similar composite cylinders and
composite spheres, respectively. The GSCS is

based on the assumption that the state of

strain/stress in any fiber or particle can be

approximated by embedding a composite cylinder

or composite sphere in an infinite medium

which has the properties of the composite

material. The GSCS, CCA and CSA give the same

results in all cases when an exact solution of

the two latter models can be obtained.

However, the GSCS approximation can also be

applied when exact solutions for the CCA and

CSA are not available, thus for transverse

shear of fiber composites and shear of

particular composites.

The analysis can be much facilitated by

introduction of the concept of equivalent

fiber or particle. To explain this consider

-: mmnmmm M MM MM
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fiber/particle which is coated with a thin

interphase layer, or more abstractly-

exhibits the displacement jumps (1) when

subjected to surface tractions. It has been

shown that for the purpose of model analysis

such a fiber can be replaced by a homogeneous

fiber with the following equivalent

thermoelastic properties

k2
28

k e = 2 k2

I + 2iTi

EAe = EA2 VAe VA2 (14)

GA + U A2 8GAi

cAe = aA2 aTe = aT2

Here k is transverse bulk modulus, E, v, G and

a are Young's modulus, Poisson's ratio, shear

modulus and thermal expansion coefficient,

respectively, A denotes axial - in fiber-

direction and T denotes transverse direction

and 2 and e indicate fiber and equivalent

property, respectively.

Similarly, for a spherical particle the

equivalent bulk modulus is given by
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K2 (15)Ke I 9K2 8

where 2 now indicates particle. In case of

defined interphase the interface constants

appearing in (14, 15) are given by (2,3).

The implication of these results is that

in all cases where CCA and CSA results are

available for perfect interface conditions,

conversion to imperfect interface conditions

is simply effected by replacement of fiber or

particle properties by (14) or (15). In other

cases such as transverse shear for a

unidirectional fiber composite and shear for a

particulate composite the equivalent

fiber/particle concept is not rigorously valid

and the GSCS analysis has to be generalized to

accommodate imperfect interface conditions.

It turns out that in the case of a fiber

composite with transversely isotropic fibers

the effect of imperfect interface enters

through the nondimensional parameters

e a k2 /Dna qA = GA2 /Dta
(16)

-M WrT2/Dna qT = GT2/Dsa

with similar parameters in the case of a

particulate composite. Analysis has shown

that for a unidirectional fiber composite

effective axial Young's modulus, axial

' A.



20

Poisson's ratio and axial thermal expansion

coefficient are insignificantly affected by

interface imperfection, transverse bulk

modulus and transverse thermal expansion

coefficient are significantly affected

throough the parameter e only, axial shear

modulus and transverse shear modulus are

significantly affected - the former through qA

and the latter through m and q,. These

effects are illustrated in Figs. 2-4. The

large effect of imperfect normal bond on

transverse thermal expansion coefficient is of

particular interest since it raises the

possibility of obtaining e, experimentally, in

simple fashion. Similarly, measurement of

effective axial shear modulus can be used to

determine qA"

For transverse shear modulus the relation

between m and q gives rise to various

possibilities. In the case of isotropic

interphase it follows from (2,3) that

1-2 im/qT = 2 vi (17)

where Y, is the Poisson's ratio of the

interphase. Figure 4 shows the case of

perfect normal bond-imperfect shear bond, in

which case m = 0, and the case of imperfect

normal and shear bonds for m = qr/5 . If there

is an isotropic interphase then the first case

corresponds to v, = .5, thus an incompressible
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interphase, while the second case corresponds

to v = .375.

In the case of particulate composites the

effective elastic moduli and the thermal

expansion coefficient are significantly

affected by interfac bond while the effect on

the Poisson's ratio is moderate. See Hashin

(1990b).

VISCOELASrIC EFFECTS

Time dependent interphases are of

interest for modeling elevated temperature

behavior. They are also a convenient device

to produce relaxation, creep an damping

effects into an elastic brittle material such

as a ceramic composite. The interface

conditions resulting from a linear

viscoelastic interphase have been discussed

above. We outline here a method of evaluation

of the time dependence of composite properties

due to such interphase and we discuss some of

the results. For further details see Hashin

(1990d).

Analysis is much facilitated if we recall

the correspondence principle for viscoelastic

omposites, Hashin (1965), according to which

the LT of effective viscoelastic relaxation

moduli (creep compliances) by replacement of

phase elastic moduli (compliances) by p

multiplied LT of phase relaxation moduli

(creep compliances). The latter have been
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named for convenience TD (transform domain)

moduli (compliances). In the present case the

only source of viscoelasticity is the

interphase and inspection of (11) reveals that

these equations define TD interface parameters

pDn and pDs . It follows that to obtain LT of

effective viscoelastic properties the elastic
interface parameters appearing in expressions

for effective elastic properties are replaced
by these TD interface parameters.

Furthermore, it has been shown by
application of Tauberian theorems, Hashin

(1966), that the initial/final values of

effective relaxation moduli (creep

compliances) can be simply obtained by

replacement of phase moduli (compliacices) by

initial final values of phase relaxation

moduli (creep compliances). Thus in the

present case we can use initial/final values

of the interphase functions (12) to obtain

initial/final values of effective viscoelastic

properties, assuming that the interphase

relaxation shear modulus becomes vanishingly
small after infinite time.

Performing an elastic analysis with these

interphase parameters it is found that the

initial and final values of some properties

are numerically very close implying that the

viscoelastic effect cn be neglected.

Properties which are of this nature are:

. 11
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axial Young's relaxation moduius and creep
compliance, transverse bulk relaxation modulus

and creep compliance, axial Poisson's effect

and the axial and transverse thermal expansion

coefficients.

There is significant viscoelastic effect

for axial and transverse shear. Representing
interphase viscoelasticity by a differential
time operator the effective axial shear

relaxation modulus and creep compliance can be
evaluated analytically on the basis of the

correspondence principle and LT inversion.

Figures 5-6 show such results for Nikalon

fibers embedded in a Boron Silicate matrix.

The shear viscoelasticity of the interphase is
represented by the Maxwell model with shear

modulus Gl and viscosity coefficient q,. Time

has been normalized with respect to the

characteristic time of the Maxwell model which
is given by

r= i~1i G, (18)
The different plots of relaxation moduli and
creep compliances are characterized by the

nondimensional interface parameter

8 GA 2
q qA Z 7 .7(19)

It is seen that the smaller qA the more time
is required to develop the viscoelastic
effect. It is also seen that whatever the

value of qA, ultimately the fibers behave as

* , . ,q- *- ]I ,': "

- $. - - e mum m • • •IIN m
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cylindrical voids because of the free sliding
interface condition which develops as a final

state.

For transverse shear and transverse
uniaxial stressing/straining analytical LT
inversion is not possible but can in principle

be performed numerically. The Tauberian

theorems are readily applicable to this case.

The initial/final values are obtained hy using

the initial/final values (11) with zero value
of final shear modulus in the elastic

analysis. Such results are shown in Fig. 7
for the effective transverse Young's

compliance F4 (t).

Similar results for particulate

composites have been given in Hashin (1990b).

PLASTICITY EFFECTS

If the interphase material is subject to
plastic yielding the composite will behave as

an anisotropic elasto-plastic material. This

is again of particular interest for ceramic
composites as such an interphase introducs

ductility into an otherwise brittle material.

As in the case of viscoelastic interphase

it is to be expected that platicity effects

for a fiber composite with elasto-plastic

interphase will be signficant only for axial
and transverse shear and other loadings which

incorporate any of then, e.g. uniaxial stress.
In particular all axisymmetric states such as

At
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axial stress long fibers, isotropic transverse
stress and thermal expansion will be

adequately described by elastic analysis.

We focus attention on the important case

of axial shear in terms of the OCA or GSCS

models, which in the elastic case give the

same results for axial shear. The state of

stress for axial shear is antiplane and

therefore the only surviving stresses in
cylindrical coordinates are o and oo,. The

form of the stresses in CCA analysis is

O = S CO 0s

(20)

oft sez sin 0

Since the interphase is very thin r dependence
of interphase stresses can be neglected.

Introducing (20) into the surviving
equilibrium equation we find that the stresses

assume the simple form

ar = s Cos 0

(21)

e = -s sin 0

If initial yielding is governed by the Mises
criterion then the whole interphase will yield

when

s = y = '/V3 (22)

.. I
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where a-, is the uniaxial yield stress. Also

note that (21) is equivalent to a principal
pure shear of magnitude 7"y. Therefore

continued yielding is governed by the one

dimensional shear stress-strain relation of

the interphase. This is taken in the simple

bilinear form

S Gi S < Try

(23)
s - ry= Gi (y-y) s -- 7 Y

It follows that the effective axial shear

stress-strain relation for the CCA or the GSCS

models is also bilinear and can be simply

obtained from the results for elastic

interphase with appropriate interphase shear

modulus in the two different linear ranges.

The macroscopic stress-strain relation

relating average axial shear stress strain o12

and e,12 is then also bilinear and is as

follows:

12 = 2* - 1 2  
2 e12 <y

U 12 = 2G* 12 + (G*-G*) "yy 2712 > "y

* G1  g(l+v 2 ) + (1+q) v1
I g vi + (l+q)(l+v 2 )

G* = Gg(l+v2 ) + (1-q') v1I g v, + (1+q')(l+v 2)
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= ~J g v +(1+q))(1+v) v2

GA25 GA2 8

g =GA2 lot

and v1 , v2 are the matrix and fiber volume
fractions. Note that G* is the elastic axial

shear modulus for the case of interphase as

given in Hashin (1990a).

A plot of (24) for a composite consisting

of 50% Nikalon fibers and 50%BS matrix and

elasto-plastic interphase is shown in Fig. 8
for various values of the ratio GI/G,. The

value .05 is appropriate for Aluminum
interphase while the value 0 implies ideal
plasticity.

The case of transverse shear can be
analyzed in similar simple fashion but
evaluation of stress-strain relations for
loading programs requires incremental

analysis.

CONCLUSION
It has been shown that the presence of

thin interphase between the constituents of a
composite material can be described in terms
of imperfect interface conditions which are

>iV
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formulated in terms of interface displacement

jumps and interface parameters. This has been

applied to elastic, vicoelastic and elasto-
plastic interphase. The appropriate interface

parameters can in each case be evaluated in

terms of interphase material properties and

thickness. Thermoelastic properties of

composite materials for these various kinds of

interphases have been evaluated with special

emphasis of unidirectional fiber composites.

It has been pointed out in which cases the

interphse has significant effect on

properties.
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Effect of a Viscoelastic Interfacial Zone on
the Mechanical Behavior and Failure of
Fiber-Reinforced Composites

B. Moran, M. Gosz and J. D. Achenbach
Center for Quality Engineering and Failure Prevention
Northwestern University, Evanston, IL 60208, USA

Abstract
The overall behavior and strength of fiber-reinforced composites is significantly
affected by the interfacial bonding between the fiber and matrix material. The
assumption of perfect bonding between constituents (i.e., continuity of
interfacial tractions and displacements) may not be suitable in the presence of a
thin interfacial zone (fiber coating) or cohesive type bonding (intermolecular
bonding). In this paper a simple viscoelastic model is used to characterize the
stiffness and viscosity of the interphase, and the finite element method is used to
obtain the mechanical response of the composite. Calculations are carried out
for a unit cell in a hexagonal array of fibers. The influence of loading rate on
interfacial crack initiation and growth is investigated for both displacement and
traction controlled failure processes. Stress distributions in the cracked
interphase and in the matrix material contiguous to the interphase are also
obtained.

1. Introduction
Unlike the axial strength and stiffness properties which are primarily governed
by the axial properties of the fiber, the behavior of the fiber-reinforced composite
in the transverse direction is dominated by a relatively low stiffness matrix
material and the nature of the bond between the fiber and matrix phases. This
may place severe limitations on the overall performance of the composite and
thus it is desirable to accurately characterize the transverse properties. In most
analytical and numerical work, investigators have assumed a perfect bond
between the fibers and the matrix material which is modeled by continuity of
interfacial tractions and displacements. In reality, however, the assumption of
perfect bonding may not be suitable in the presence of a thin interfacial zone
which connects the two phases (e.g. fiber coating or intermolecular bonding). In
this analysis it is assumed that the bond between the fibers and the matrix is
effected across an infinitesimally thin interfacial zone which supports a traction
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field with both normal and tangential components. Continuity of tractions is
assumed across the interphase, however, displacements may be discontinuous
from fiber to matrix due to the presence of the interphase in-between (see also
Aboudi, 1987; Needleman, 1987; Steif and Hoysan, 1987; Achenbach and Zhu,
1989a,89b; and Hashin, 1989).

2. Problem Formulation
In this paper, the finite element method is used to investigate interfacial crack
initiation and growth in a transversely loaded composite. We consider a unit cell
in a uniform hexagonal array of fibers as illustrated in figure 1 and, noting the
hexagonal symmetry, analyze the trapezoidal region ABEF. See Gosz et al.
(1990) for details of loading and boundary conditions. It is assumed that the
matrix is isotropic and linearly elastic. The fiber is taken to be linearly elastic
and transversely isotropic. The elastic constants employed in this analysis were
obtained by Kriz and Stinchcomb (1979) and are given in table 1. For the case
of plane strain, the stress-strain relations for the matrix phase can be written as

o'ap = 2geap + Uy B.aO (1)

where the parameters l. and A are the Lame! constants and the Greek indices c; P,
and y range over 1 and 2. For the transversely isotropic fiber phase, the elastic
stress-strain relations for the case of plane strain are given by Hashin (1979).
The in-plane components are written as

cra# = (KT - GT)eyy5U + 2G7e (2)

where Kr and GT are the transverse bulk and shear moduli respectively.

X 2

F E D

A 4-~ B C
b

Fig. 1. Schematic of the unit cell of the hexagonal array composite.
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Table 1. Elastic constaris of the graphiteepoxy material system

EA((1') VA E,(Gd) Vr GA((Wa) G,(GPa) K1(GPa)

Graphite hber 232 0.279 15.0 0.490 24.0 5.03 15.0

Epoxy matri 5.35 0.354 5. ^15 0.354 1.976 1.976 6.76

2.1 Interphase Model.

Both a linearly elastic and a linearly viscoelastic constitutive relation are
considered for the interfacial zone. For the linearly elastic interphase, it is
assumed that the normal traction between the fiber and matrix phases isIproportional to the jump in the normal dLplacement across the interphase.
Similarly, the tangential traction is taken to be proportional to the jump in the
tangential displacement across the interphase. Thus,

T= kMuZj

T,= ktEud, (3)

whew

u.= uinin and T., = (ojnin)n

ug= u-u,, and T, =T-T, (4)

are the normal and tangential displacement and traction vectors respectively, [i. ],
denotes the jump in the quantity across the interphase, k., and k, are normal and
tangential stiffness parameters and T' is the traction vector (7', = n). Here ay~

a 7j is the Cauchy stress tensor. A positive jump in normal displacement,
[uZJ, denotes normal separation between the fiber and matrix phases. However,
we assume that a negative jump in normal displacement would correspond to a
physically unrealistic interpenetration of the matrix phase into the fiber phase
and, thus, we enforce the impenetrability constraint

For the linearly viscoelastic interphase, the time dependent response of the
interfacial zone is taken into acount. the mateial response in both the normal
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and tangential directions is considered to be that of a standard linear solid (SLS).
The SLS qualitatively represents the behavior of an idealized cross-linked
polymer and can be viewed as a spring in parallel with a spring and a dashpot.
The normal and tangential tractions T. and T, are then related to the displacement
jumps, [u,, and [ujl, across the interphase by

. =k.j k. IJ
Tt k

T, + -- = t, ], + [u, (6)

where T is the relaxation time, k,. and k., are the instantaneous (glassy) stiffness
components and k.., and k., are the long term (rubbery) stiffness components.

2.2 Finite Element Implementation

We assume small displacements and the strain displacement relation is written as

e# = (uij + uj) 12  (7)

while the equilibrium equation (assuming no body forces) is given by

Mj = 0. (8)

The Principle of Virtual Work is written as

fn aukida + fS W =I J6uidF (9)

where D denotes the interior of the trapezoidal region shown in figure 1, Fis the
external traction boundary, and S is the interfacial traction boundary. The &i are
the kinematically admissible displacements (satisfying the periodic displacement
boundary conditions and vanishing on the prescribed displacement boundary).
The second term in the above equation is the virtual work of separation of the
matrix and fiber phases, i.e.

8= TLU1u] + T5[u,]t. (10)

Due to the time dependence of the linearly viscoelastic interphase, the virtual
work expression, (9), must be discretized in both space and time. The approach
we use is based on the method presented by Taylor et al. (1970) and is discussed
more fully by Gosz et al. (1990). In order to satisfy the impenetrability
constraint (5) full Newton Raphson equilibrium iteration is employed with a

. 77 .
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penalty-like stress update scheme in which the interphase is taken to have a
suitably high normal stiffness parameter in compression.

3. Macroscopic Response
The macroscopic response of the composite is influenced by the impenetrability
condition (5) which acts as a unilateral constraint on the deformation of the
interphase. When the constraint is not imposed the response is transvexsely
isotropic as expected for a configuration with linearly elastic constituents and
hexagonal symmetry (see Love, 1927; Lekhnitskii, 1963). When the constraint
is.imposed the response is not transversely isotropic but depends upon the
direction and character of the loading. For example, the constraint gives rise to
significant differences in the tensile and compressive response. These differences
are most pronounced when the interfacial stiffness parameters are low. In the
present investigation we consider uniaxial tensile loading only, and in this case
the deviations from transverse isotropy are slight.

The effective transverse properties of the fiber-reinforced composite may be
calculated using the numerical procedure briefly outlined above. For the
composite with a linearly elastic interphase, the numerical results for the
effective transverse bulk and shear moduli are compared with the analytical
results of Hashin (1989) where the composite cylinder assemblage (CCA) model
is employed to obtain the effective transverse bulk modulus, and the generalized
self consistent scheme (GSCS) model is used to determine the effective
transverse shear modulus.

Ile numerical results for the effective transverse bulk and shear moduli and
the CCA and GSCS results of Hashin (1989) are shown in figures 2 and 3. In
figure 2, the effective transverse bulk modulus is plotted as a function of
normalized interfacial stiffness. The normal and tangential stiffness components
are taken to be equal (kA=k. The normalization is chosen such that k=ka/GT.
where, a, is the fiber radius and GT. is the transverse shear modulus of the
matrix. In figure 3, the effective transverse shear modulus normalized with
respect to the shear modulus of the matrix is plotted versus normalized interfacial
stiffness. Again, the normal and tangential stiffness components are taken to be
equal, and the normalization is chosen as before. As shown in figure 2, when
the impenetrability constraint (5) is not enforced, the numerical and CCA results
virtually coincide over the entire range of interphase stiffness parameters. When
this constraint is enforced, the numerical results only deviate from the CCA
results at relatively low interfacial stiffness parameters. For the effective
transverse shear modulus, when the impenetrability constraint (5) is enforced, the
numerical results deviate significantly from the GSCS results at relatively low
interfacial stiffness parameters, but the deviation at low stiffnesses is less
significant when this constraint is not enforced. It should be noted that the
magnitude of the deviation which results when the constraint (5) is enforced
depends on the loading condition considered in the numerical procedure. In the
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present analysis KT * and Gr* are determined by subjecting the hexagonal array
model to tensile uniaxial loading. When the condition (5) is not imposed, the
numerical values obiained for both moduli are independent of the loading
condition considered.

Similar results for the time-dependent behavior of the composite may be
obtained. In this case suitable application of the correspondence principle allows
approximate analytical representations of the relaxation behavior to be derived
and compared with the numerical results (see Gosz et al. , 1990 for details). For
example, as shown in figure 4, the analytic results are compared with those
obtained numerically for the effective relaxation modulus in bulk. In this case,
the effective time dependent bulk modulus, Kr*(t), normalized with respect to
the transverse bulk modulus of the matrix, is plotted versus time. The normal
and tangential stiffness components of the SLS are assumed to be synchronous.
The normalized glassy stiffness is chosen such that k. = kva/GT, and the ratio
of glassy to long term stiffness is taken to be (klk..= 10).

1.0-

Relaxation model

0.8
E t \Numerical results

illa v. 'r
0.4

Ig*re

0.0 5.0 10.0 15.0

Fig. 4. Comparison of relaxation model in transverse bulk
with the numerical results.
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4. Failure Simulation
We now focus on the microscopic behavior of a transversely loaded fiber-
reinforced composite. In particular, for the graphite/epoxy composite with a
linearly viscoelastic interfacial zone, the effect of loading rate on interfacial crack
initiation and growth is examined. As in the previous section, the numerical
calculations are carried out for a unit cell in a periodic array of fibers (the
trapezoidal region of figure 1). The cell is loaded in the mid-closest packing
direction (see figure 5) and strained at a constant rate. Interfacial crack initiation,
i.e. debonding of the fiber and matrix, is assumed to occur in either a
displacement controlled or a traction controlled manner as discussed below. The
consideration of a periodic unit cell yields qualitative information about
micromechanical failure -cesses and the associated macroscopic response.

4.1 Failure Criteria

It is assumed that interphase failure can occur in either a displacement controlled
or a traction controlled manner. In the traction controlled process it is assumed
that failure occurs when the normal traction component, T., between the fiber
and matrix phases reaches a critical value, T.*. The failure criterion is then
written simply as

T. - T11* = 0. (11)

In the displacement controlled failure process, it is assumed that bond failure
initiates when the normal jump in displacement across the interphase reaches a
critical value, 8. Thus, interfacial bond failure occurs when

[u1 1- =0. (12)

4 0 0-1

.4o 00 -1.a >
.0-0 0-1

Fig. 5. Hexagonal array composite under Mid-CPD loading.
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0,
0 1

Fig. 6. Displacement and traction controlled failure of the standard linear solid. The
lower solid line represents the constitutive response of the SLS as the time rate of
change of the jump in normal displacement, [ai], approaches zero. The upper solid
line represents the response as [u,]--a. The solid line in-between represents the
response at an intermediate rate.

The isolated response of the SLS subject to both failure criteria is shown in
figure 6. As shown in the figure, for the traction controlled failure process,
failure occurs at points along the horizontal dashed line, and an increasingly
brittle response of the SLS is observed as the loading rate is increased. For the
displacement controlled process, failure occurs at points along the vertical dashed
line and a tougher response is observed with increasing loading rate. When the
two failure processes are considered to be competing, failure will occur in either
a traction controlled mode or a displacement controlled mode depending on the
loading rate and the critical values of T.* and 8.

4.2 Macroscopic Constitutive Response

The macroscopic constitutive response of the fiber-reinforced composite is
illustrated in figure 7. The fiber volume fraction is taken to be Vf = 0.5. For
the displacement controlled process, the critical normal separation, 8, is
arbitrarily chosen such that 8/a = 0.001. For a fiber diameter of 20pm, for
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Fig. 7. Macroscopic constitutive response for displacement and traction controlled
failure processes. In both figures, the solid line represents the response Of the
composite as the macroscopic strain rate i -+ 0. The dotted line represents the

response for i= I.OE-04, while i- ).OE-03 for the dashed line.
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example, 8 can be considered of the order lOnm. For the traction controlled
process, the critical normal traction is chosen to be T.* = k..8. The normal
interfacial stiffness parameters, normalized with respect to the fiber radius and the
transverse shear modulus of the matrix, are taken to be k,,a/GTr, = 5 and
k...a/GT. = 1. It is assumed that the interphase exhibits a stiffer response in
shear than for normal separation. We thus choose the tangential stiffness
parameters such that (kjkv = k... = 0.1). The time constant associated with

each component is chosen to be unity for convenience.
As shown in the figure, the remote applied stress, o., normalized with

respect to the critical normal traction, T.*, is plotted versus percent macroscopic

strain for both failure criteria. In the displacement controlled process, the point
of failure initiation occurs at a progressively higher remote applied stress and at a
greater macroscopic strain as the macroscopic strain rate is increased.
Qualitatively, under these circumstances, both the toughness and the ductility of
the composite increase with loading rate. In the traction controlled process, the
opposite trend is observed. The effect of increasing the strain rate tends to
embrittle the composite.

8.0

6.0-

2--
4.0

"2.0

0.0 0.1 0.2

g xlOO

Fig. B. Illustration of the linear relationship between points of failure
initiation for displacement and traction controlled failure criteria.
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It is interesting to note that a linear relationship exists between points of
failure initiation at a given strain rate for both failure criteria as shown in figure
8. The lower solid line represents the response of the composite as the
macroscopic strain rate i- 0. The upper solid line represents the response as
i-+ --. When the composite is strained at a given rate in-between these two
extremes, interfacial bond failure will initiate at a point on the dotted line for the
traction controlled process and at a point on the dashed line for the displacement
controlled process. Due to our choice of critical values 3 and T*, the dotted and

dashed lines intersect at a point on the stress-stain curve corresponding to e -
0. Thus, the composite would always fail in a traction controlled manner if the
two processes were competing.

4.3 Stress Distributions

Significant changes in the stress distributions in the interphase and in the matrix
material just outside of the interphase are observed during the failure process.
The stress distributions shown in figure 9 are obtained during the traction
controlled simulation at a macroscopic strain rate of i= 0.001. In the upper
diagram, the normal traction in the interphase normalized with respect to the
critical value, T.*, is plotted versus angle, 0. In the lower diagram, the
circumferential stress, 0 ee, normalized with respect to the critical normal traction
is plotted versus angle. The distributions represented by the solid lines are
obtained at the point on the stress-strain curve (the dashed line of figure 7) just
prior to failure initiation. The distributions represented by the dotted lines are
obtained after the onset of failure at a macroscopic strain of approximately 0.04
percent - the point where the remote applied stress begins to increase
monotonically. The distributions represented by the dashed lines are obtained at
a macroscopic strain of 02 per at.

The distributions plotted in we upper diagram indicate that interphase failure
initiates at an angle of zero degrees (see also figure 1), and an interphase crack
develops and propagates relatively quickly to an angle of approximately 35
degrees. As the composite is macroscopically strained further, the interphase
crack grows at a much slower rate to an angle of approximately 54 degrees when
a macroscopic strain of 0.2 percent is reached. It is expected that when the
macroscopic strain of the composite is increased beyond 0.2 percent, the crack
will continue to propagate until it reaches the compressive region which
develops in the interphase at approximately 82 degrees.

The corresponding circumferential stress distributions in the matrix material
just outside the interphase are illustrated in the lower diagram. These
distributions indicate that a large stress concentration develops at the crack tip as
the crack propagates around the fiber. This large circumferential stress
concentration may give rise to radial matrix cracking leading to severe
degradation of the mechanical properties of the composite.

4 _ ___ ___ ___ ___ ___ ___ ___ ___ __ ..
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5. Concluding Remarks
In the present work, the transverse loading of the hexagonal array composite is
examined from both macroscopic and microscopic points of view. Interphase
failure initiation and growth are examined for displacement and traction
controlled failure processes. The macroscopic constitutive response of the
composite is obtained for both failure criteria. As the macroscopic strain rate of
the composite is increased, the toughness and ductility increase in the
displacement controlled process, while the composite becomes more brittle in
the traction controlled process. Stress distributions in the interphase and in the
matrix material contiguous to the interphase are obtained during the failure
simulations. Large circumferential stress concentrations in the matrix form at
the onset of interphase failure and redistribute and increase in magnitude as
failure progresses. This phenomenon may give rise to radial matrix cracking
leading to severe degradation of the macroscopic properties of the composite.
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Measurement of Strength of Thin Film
Interfaces by Laser Spallation Experiment

V. Gupta* and A. S. Argon

(Massachusetts Institute of Technology, Cambridge, MA 02139.)

Abstract

Laser Spallation Experiment is developed to measure the strength of planar
interfaces between a substrate and a thin coating(.3 to 3pim). In this technique a
laser pulse of a high enough energy and a pre-determined length is converted /

into a pressure pulse of a critical amplitude and width that is sent through the
substrate toward th' free su face with the coating. The reflected tensile wave
from the free surface of the coating pries off the coating. The critical stress
amplitude that accomplishes the removal of the coating is determined from a
computer simulation process. The simulation itself is verified by means of a
piezoelectric crystal probe that is capable of mapping out the profile of the
stress pulse generated by the laser pulse. Interface strength values ranging from
3.7 to 10.53 GPa are determined for the SilSiC system, whereas for the
carbonlSiC system, an average value of 6.91 GPa is obtained. Furthermore,
sufficient experimental evidences are provided to show the potential of the laser
technique to determine the interface toughness, provided well characterizable
flaws can be planted on the interface.

I Introduction

It is now well recognized that considerable toughness in composites with
brittle, but strong reinforcing fibers, can be achieved by controlled debonding of
the fibers from the matrix to prevent premature fiber fracture. In composites
with brittle matrices, such as ceramics and glass, this is often the only means of
obtaining toughness (Evans 1989). In metal matrix composites, an additional
problem of interface reaction between the matrix and the fiber is present, which

Preently at the Thayer School of Engineering, Dartmouth College, Hanover, NH
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sooner or later, leads to the failure of fiber. To neutralize this problem, it is now
a standard practice to protect the fibers with a less reactive sacrificial coating
(Gupta et at. 1989). This also permits controlled delamination of the coating
from the fiber along the fiber-coating interface to prevent cracks external to the
fiber or residual reaction products on the fiber from damaging the latter. Thus, it
has been suggested (Gupta et al. 1989, Argon et al. 1989 a) that such fiber-
coating interfaces with tailored strength and toughness properties can be used as
mechLtical fuses to decouple the undamaged fibers from their damaged
surrounoings to prevent catastrophic failure of the part. An important dimension
of utilizing tailored properties of interfaces is the measurement of the tensile
strength and intrinsic delamination toughness of the fiber-coating interface. How
the intrinsic toughness can be determined from the spontaneous delamination
from the substrates of stressed coatings, where the coating is under positive or
negative residual stress, has been discussed earlier by us (Argon et al. 1989 a
&b). Here, we discuss how the tensile strength of such fiber-coating interfaces
can be measured by a laser spallation technique.

Although the development of the laser spallation experiment was motivated
by our specific interest in engineering the interfaces in composites, the
technique can be used to determine the strength of planar interfaces between
coatings (> .3 pm in thickness) and substrates of any material. Hence, it
should be of considerable interest to researchers in the device and thermal spray
industries, where the mechanical problems stemming from the interface failure
am of critical importance.

Measurement of interface properties is not a new problem in the thin film
and coating technology, and the literature is replete with practical techniques
(Jacobsson 1976; Jacobsson and Kruse 1973; Chapman 1974; Chiang et al.
1981; Davutoglu and Aksay 1981; Chow et al 1976) for the mcasurement of
some average properties of thin films or coating interfaces, recently reviewed by
Mittal (1978). But, none of the tests mentioned above measure the strength of
interfaces. In order to measure the strength of interfaces between very thin
coatings and substrates, a new laser spallation technique has been developed that
had been initially introduced by Vossen (1978), utilizing shock waves produced
by short laser pulses (Lang 1974; Fox 1974; Ready 1965; Anderholm 1970;
Peercy et al. 1970). The technique involves impinging a high energy laser
pulse (pulse width of nanosecond duration), from a Nd-YAG laser (1.06,pm
wavelength) onto a thin absorption layer on the back surface of the substrate to
which the coating of interest is attached. The sudden expansion of the absorbing
film generates a compressive shock wave direct, " towards the test
coating/substrate interface. It is the reflection of the compressive wave packet
from the surface of the test coating that gives rise to a tensile pulse and leads to
the removal of the coating, if the amplitude is high enough. The technique was
used earlier by Park (1986) to detach films from the substrates. In his
experiments, the absorbing film was sandwiched by a transparent fused quartz
disc in order to increase the amplitude of the generated stress pulse. In most of
the previous investigations of this phenomenon, ample evidence for the
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feasibility of the technique was provided, but insufficient details were given for
the quantitative use of the approach as a research tool.

Hence, the technique in its previous form, prior to the present development,
could be used at best only to provide a figure of merit of the interface. The
thrust of the present research has been to develop the laser spallation experiment
in a more definitive way capable of quantifying the interface strength.
Furthermore, the goal here is to detach thin films (0.3-2 ym thick) from
various substrates in contrast to the experiments done by Vossen (1978) and
Park (1976), wherein test coatings of 20-30 pm thickness were considered. In
our investigation to be presented here, we demonstrate that by careful use of the
technique accurate determinations of tensile strength of interfaces are possible.

H Strategy of Interface Strength Measurement

2.1 x imnlArneet

Since the actual interfaces of interest are between a cylindrical fiber and its
coating, which are not readily accessible to measurement by the spallation
technique, the experimental approach to be presented here utilizes a planar
arrangement of a model substrate and coating combination which is shown in
Fig. 1. The collimated laser pulse is made to impinge on a thin energy-
absorbing film sandwiched between the back surface of the substrate of interest
and a fused quartz confining plate, transparent to the laser wavelength (1.06 Am
in this experiment). The characteristics of the ideal energy absorbing film are:
high absorptivity; a very small critical absorption depth (much smaller than the
thickness of the film); a high melting temperature, high coefficient of thermal
expansion, high elastic modulus, low thermal diffusivity, and finally a

Confining fused quartz Substrate .
plue tSi Crystal, Pitch -55

Ribbon, etc.

Puln Laser; . Pressure wave

- Surface accelerations
measured

Wave length • 1.06, m
Maximum energy 850 mj
Normal pulse duration a 8On

Energy absorbing gold film s ic Coating

Test interface
Figue 1. Schemalc of the Lwr Spaflation Experiment.
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thickness, A, roughly equal to the test coating of interest applied to the front
surface of the substrate. Based on a figure of merit analysis that captures the
essence of the thermoelastic stress generation for various alternative energy
absorbing materials, it was concluded that gold is the most effective material
that maximizes the generated stress pulse amplitudes.

A key element of the experiment is to determine the amplitude of the
tension wave that is formed by reflection of the pressure wave from the free
surface of the coating attached to the rear surface of the substrate. The preferred
method of accomplishing this is to measure the time rate of change of
displacement of the free surface of the coating as the main compression pulse is
reflected. This is usually done by the laser Doppler interferometry used widely in
the plate impact research (Clifton, 1978). In the experiments to be reported here,
however, only pulsing lasers of limited power were available, requiring to focus
the beam over relatively small areas of roughly 1 mm2 . This limits the planar
portion of the pressure pulse to be reflected from the free surface of the test
coating to a similarly small area, which makes the accurate measurement of the
accelerations and decelerations of these small planar portions of the free surface
rather difficult by the laser Doppler interferometry. In view of this,
quantification of the measurements of the interface strength used here was based
on a three part strategy.

The first part of the strategy was the development of a finite element
computer simulation of the conversion of the laser light pulse into a pressure
pulse. Next, the traverse of this pulse through any desired substrate of interest is
monitored and finally the resulting amplitude and history of the tensile stress at
the interface is determined as the stress wave is reflected from the free surface of
the coating of given properties and thickness.

In the second part of our strategy, the pressure pulses were measured in a
micro-electronic device in which the conditions of the computer simulation
study were experimentally achieved. In this device, to be described below, the
substrate and its test coating were replaced by a X-cut piezoelectric (PE) crystal
equipped on its back face with an energy-absorbing gold film and on the front
surface with a very thin gold electrode for signal pickup. The PE crystal with its
attached fused quartz confining plate then became a pressure transducer operating

* in the short circuit mode, capable of pressure wave determination with a time
resolution of 0.7 ns. The measured pressure signal profiles were then compared
with those obtained with the computer simulation in which the substrate is
appropriately given the elastic and thermal properties of the X-cut PE quartz
crystal. This permits verifying and fine tuning of the computer simulation.

In the third part of the strategy, actual spallation experiments were carried
out. The laser fluence necessary for the removal of the probed portion of the
coating at the interface was recorded, and the tensile stress across the interface
that accomplishes this was determined from the computer program.

In what follows, we discuss first in Section III the computer simulation of
the laser-pulse-generated pressure pulses. In Section IV, we present the
experimental details of the micro-electronic device for the measurement of
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pressure pulses with the PE crystal probe. We then present the results of the
pressure wave profiles that have been obtained. Results for the actual spallation
experiment and the specific interface strength values are given for the SiC/Si and
SiC/Carbon interface systems in Section V. In Section VI, the basic results of
the computer simulation are given as generalized interface stress charts for
various coating/substrate systems. Finally, Section VII provides a discussion of
the approach and its potential.

IH Simulation of the Stress Pulses (Part I of Strategy)

3.1 Statement of the Problem

Figure 2(a) shows schematically the configuration of the laser spallation probe
consisting of, from left to right: the fused quartz confining plate (Q), the thin

Energy obsorbing gold film
SiC coating

Fused quartz Substrate c

,- AI - Ac

Light
Pulse

- AI

0 S

/
p,C,k, X,, a

Energy absorbing gold film

Pitch 55 iS C coatng
Fused quartz Carbon Ribbon

p. C, k.X,,& .a Thin glue Layer
(0.5-F1&m thick)

Figure 2. Configuration for testing (a) Si/SiC and (b) Pitch-55 Ribbon/SiC systems.
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energy absorbing film (F) of thickness A, the substrate (S) and the coating
(C) of interest. The laser pulse impinging on the energy absorbing film (gold)
is generated by a Nd-YAG laser emitting at a wavelength of 1.06 pm. The laser
used was in the MIT George Harrison Spectroscopy Laboratory. The peak power
of the laser is 3 x 108 watts. The spatial profile of the laser pulse is Gaussian in
nature. The temporal profile, however, is a distorted Gaussian (Ready 1971).
The laser can be operated at 2.5 ns or 8 ns nominal pulse widths with a
maximum achievable energy of 800 mJ in a nominal laser beam diameter of 7
MM.

The critical penetration depth 8 of laser light at this wavelength into the
gold is only 20 nm (Ready 1965). Since this is very much smaller than the
thickness A(-lpm) of the energy absorbing film, the simplifying assumption
is made that the energy is deposited on the interface between the film and the
fused quartz confining plate. The cross-sectional area of the laser beam incident
on this interface is of the order of 1-2 mm2 .

Additional specifications in the simulation include: ignoring temperature
dependence in all the relevant physical properties, such as thermal conductivity,
coefficient of thermal expansion, specific heat, density, and elastic moduli. Such
variation can, in principle, be taken into account in the finite element solution
but were ignored in the initial simulation. Actual measurements and the
simulation indicated that melting of the energy-absorbing film is undesirable
since it broadens and diffuses the sharpness of the pressure wave, but is
necessary to endure in order to obtain the required level of interface stress.
Therefore, the simulation considers melting in the energy-absorbing film but
only solid-like behavior in all the other media. The effect of volume changes
associated with the phase change in the gold film is considered. This is quite
significant for the gold film which undergoes a volume expansion of 5.1%
(Smithells Metals Handbook 1983) on melting. The time constant for viscous
flow relaxations in the narrow molten region of the energy absorbing film is
much longer than the duration of the laser pulse. Therefore, even if melting of
portions of the film occurs, it is adequate to account in the simulation for only
the changes in the physical properties due to the melting transition, but to
ignore all viscous flow relaxations. Furthermore, the thermal diffusion distance
in most absorbing films during the laser heating time of 2.5 ns varies between
1 to 10 im. This distance is negligible as compared to the radius of the laser
heating spot of I mm. The absence of fluid-like flow of the molten material
and small thermal diffusion distance suggests that the individual material points
are blind to their neighbors in the radial direction and their deformation is
strictly governed by the amplitude of the laser energy impinging directly on
them Hence, the generation of the stress pulse can be modelled as a one-
dimensional phenomenon.

The associated phenomenon of the pulse propagation in the substrate, and
the eventual spalling of the test coating are also modelled using the one-
dimensional stress wave equations. The validity of this assumption will be
verified later by the actual measured pressure pulse shapes to be discussed in

4
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Section IV below.
Ignoring the thermoelastic effect as being quite small, the simulation

considers two related, but uncoupled phenomena of transient heat transfer,
giving temperature distributions in and around the energy-absorbing gold film as
a function of time, and the related transient elastic wave propagation in all four
media of Q, F, S and C, that results from the time rate of change of the
thermal misfit, induced by transient heating. Since the Pitch-55 carbon ribbon
and the pyrolytic graphite substrate used to model the Pitch-55 fiber are
orthotropic in their elastic properties, the anisotropic effects are also considered
in the present formulation. The details of the governing equations and the
solution technique can be found in Gupta (1990). Here, we discuss briefly the
key features of the solution.

3.2 Solution of the Governing Equations

Figures 3 a & b show the traverse of pressure fronts in both the Q and S
spaces for two different normalized times of 70 and 109 for the constants Hq,
Kq and Hs and Ks(tO be defined below) given in the figure. In Figure 3, the
time t; distance x, temperature T, displacement u, and the stress a are
ncrmlized by introducing the variables:

fix/A; r = t/to; 0 = TITo; 4p = ulu; ;= / ()

where A, to , To , uo and ao are the fundamental units of length, time,
temperature, displacement and stress respectively, and are defined as
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Figure 3. Generation and propagation of stress pulses in Q and S spaces.
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to=(Ac)(A To- qi.tii 0 qAtj
(CpA)f' U p&2 f

(2)

- + t(2 +L qAti ad y= (3A+ 2P)(a~pC)
kp&2  I

where in turn, A, c, C, p. 8, r are the thickness, the one-dimensional pressure
wave velocity, the specific heat, the density, the characteristic penetration depth
of light energy and the Grueneisen constant respectively, all for the energy-
absorbing film, which is taken as the medium for the basis of normalization.
Atj is duration of the laser pulse and q is the absorbed laser fluence.The
parameters H and K enter the formulation when the different physical
properties of the substrate and confining quartz media are represented in terms of
the properties of the energy absorbing film as

Hi = (ctj2 ; Ki rC/c)f3
v-i I =(,Yclck(3)

In equations 2&3 above, the subscripts i andf refer to the substrate and the

energy-absorbing film respectively.
A more expanded figure of the pressure wave profile in the piezoelectric

substrate is shown in Fig. 4, which reveals, in addition to the expected main
pressure wave abc, an initially unexpected tension wave cde immediately
following the compression wave. This tension wave has been found in all
simulations with metallic energy absorbing films and should have useful
properties in providing additional tension across the test interface between S
and C. It appears to result from a space heating effect. As the thermal front
penetrates into the energy absorbing film away from the Q-F interface, the
interior of the film undergoes a "flash" expansion during the time increment
AtI of the short laser pulse, while the material in the forward direction still
experiences no effect of the pulse. The pressure wave released from such interior
slabs in the film and travelling back towards the Q-F interface will be partially
reflected from the interface back into the film and in the forward direction as a
tension wave, because of the lower modulus and much lower density of the fused
quartz in comparison to those properties of the gold film. This was also
confirmed by a test simulation where the elastic properties of the two media
were matched at the Q-F interface, resulting in the absence of the tension peak.
Furthermore, such a "rebounding" condition should be favored in a system in
which the "flash" expansion of the energy-absorbing packet cannot be
significantly counteracted by the elastic wave tending to disperse the misfit
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during the time, the laser pulse is on; i.e., systems in which

2.00 r=70T.

S=PE

b 1.00 d

-0.00 0 C

*~-1.00

-2.00
0 b
Z H;,-.1 485  KP,mr.271

-3.001
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Normalized Distance, C=x/A

Figure 4. Detailed structure of the stress pulse in the piezoelectric substrate.

IAtl CpC 2 AcCpC (4)

the ratio of the average thermal velocity to the sound velocity is high. In eqn.

(4) above, Ac is the thickness of the coating to be blown off and k is the

thermal conductivity of the energy absorbing film. In systems with metallic

energy-absorbing films for which the simulations have been performed, where

the tension peak was found, the ratio

k/ACpc

in Eqn. (4) was found to be around 0.05-0.1, while for a carbon film which

does not show the peak, the ratio is as low as 3x10 3 .
In the simulation, the propagation of the stress pulse was monitored in the

substrate until it completed the tensile loading of the coating/substrate interface.

The stress history of the Si/SiC interface due to the pulse of Fig. 4 and for a

SiC coating of 1.5 pm thickness is shown in Fig. 5. Zero values prior to the

main signal correspond to the time lag in the arrival of the stress pulse at the

interface. Thus, for a given threshold laser fluence, the interface strength can be

calculated from the amplitude of such plots.

;fS
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Figure 5. Stress history at the interface.

IV Experimental Stress Pulse Measurements (Part II of the

Strategy)

4.1 TIX iQro;ltronic Ieve

A schematic view of the micro-electronic device with the X-cut piezoelectric
crystal is shown in Fig. 6. The assembly of fused quartz plate (Q), energy-
absorbing(gold) film (F), and the PE crystal, taking the place of a substrate, is
shown encased in a Bakelite housing. 1 /pm thick gold films were chosen
(Ditchburn 1963) to completely absorb the laser fluence in order to avoid the
well-known radial cracking phenomenon (Volkova 1967) in the substrate disc
due to its heating by the transmitted laser fluence. The laser-absorbing gold film
also acts as a ground electrode for the piezoelectric crystal. A rubber "0" ring
between the housing and the PE crystal radially compresses the latter when the
copper electrode housing (C) is attached to the bakelite housing. The radial pre-
compression of the substrate disc counteracts cracking of the substrate disc
subjected to the sudden impact of the generated stress pulse. Figure 7 shows a
perpective view of a typical sandwich element in the PE device. The PE device
has a gold energy-absorbing film sandwiched between the PE crystal and the Q
plate, acting also as the ground electrode of the PE device. As shown, this
extends all the way to the front surface of the PE crystal, where it terminates as
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an outer ring, to which the copper electrode housing makes contact. Six equally
spaced round gold electrode tabs of 2 mm diameter communicating with a
central round tab through thin conducting spokes (25 Am wide) constitute the
secondary electrode. These electrodes were deposited by photolithographic
techniques. This geometry of the secondary electrode was designed to pick up the
one-dimensional structure of the current signal. This was ensured by focussing
the laser beam to a 2-3 mm spot on the laser-absorbing film in line with one
of the 2 mmt diameter secondary electrodes as shown in Fig. 7. This assembly
permits as many as six separate measurements of the shapes of arriving pressure
pulses by indexing a new tab into the line of sight of the collimated beam.

Bakelite
hossing Piezo electric crystal probe

\ copper electrode housing

Pick-up probe

lFused quartdisk

~spring

focusing E nergy
less - bsorbing

iagold tIoM
~insulating bakelite

"0 Ring sleeves

fused quartz disk

TriggJ LeC roy _
Tri99e 7Digitiger

[ Signal to PC

Figure 6. A schematic view of the microelectronic device.

This assembly of fused and piezo-electric quartz is then encapsuled by a
copper electrode housing by lapping it onto the edges of the bakelite housing so
that the legs vv and hh of the copper piece (see Fig. 6) touch the outer ground
electrode ring on the rear face of the crystal. Thus, the whole copper enclosure
acts as a ground electrode. A specially constructed pickup probe with a copper
leg, insulated from the copper piece, is then inserted via the opening oo, so
that the copper leg touches the central secondary electrode. The short circuit
current derived between the two electrodes is picked up via a BNC plug fastened
on top of the pick-up probe and fed into a Lecroy high speed digitizer by a BNC
cable. A high speed Lecroy digitizer (1.3 GHz sampling rate) is needed to record
the stress pulses with sub-nanosecond rise times. Since the experiment is
performed in the single shot mode, the digitizer is triggered by an electronic
pulse that is fired just before the lasing of the optical pulse. The details of the
micro-circuitry and various considerations in designing the micro-electronic
device can be found in Gupta (1990).
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Figure 7. Perspective view of the micro-electronics device.

4.2 Pressure P es in the Piezo.-lectr Castals

The procedure of using the X-cut PE quartz crystal to record ultra-short
duration high amplitude pulses follows the technique described by Graham et
al. 1965. The measurement is made in the short circuit mode, between the
ground electrode that is struck by the laser beam and the front electrode from
which the pressure wave is reflected, through an external circuit incorporating
the digitizer with a 50D impedance. The short circuit current i(t) obtained
from the crystal as the stress wave propagates in the crystal is given by (Graham
et al. 1965)

i(t) [ O (t) - al(t
(5)

where A is the effective cross-sectional area of the laser beam, I is the
thickness of the crystal, c is the velocity of the planar pressure wave, f is the
polarization coefficient of the crystal and, o(t) and o(t) are the amplitudes of
the stress pulses on the ground (impacted energy-absorbing film) and front
surface electrodes of the crystal. The term cr(r) is to be interpreted as the
amplitude that hits the free surface, but is annulled instantly by an equal and
opposite virtual amplitude in order to satisfy the free surface boundary condition.
In the absence of such interpretations, which were apparently not explained by
(Graham et al. 1965), equation (5) could be misleading as the term aol(t) is
always zero. Nevertheless, if the wavelength of the stress packet is smaller than
the crystal thickness, equation (5) reduces to

I
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i(t)=f A ao (t) for t < /c1 (6)

which gives the time dependent profile of the stress wave. Equation (6) predicts
that the stress at the input electrode is directly proportional to the instantaneous
current for times less than the wave transit time.

Most of the researchers (Lang 1974; Fox 1974; Ready 1965; Anderholm
1970; Park 1986) in the past have used the above equation to measure the
stresses at the input electrode of the crystal. However, if the thickness of the
crystal is greater than the width of the stress pulse, then two short-circuit current
signals corresponding to each electrode are obtained. The stress is related to the
current signal at the ground electrode via equation (6), but interestingly, the
current signal output when the pulse hits the rear electrode is exactly twice that
obtained from the ground electrode. This is explained in details by Gupta and
Epstein (1990), where the physical phenomenon described by the above
equations is elucidated. Because the laser fluences were sufficient to melt a part
of the input electrode, it became necessary to record the current signal emitted
from the rear electrode for more reliable measurement of the generated stress
pulse.

4.4 Comtrson of Meurements with Predictions

The simulation presented in Section III considered only a one-dimensional case
of propagation of elastic waves due to the laser-pulse-induced, rate-of-change-of-
thermal-expansion misfit. That this is close to reality is demonstrated in Fig. 8,
where the input current profile resulting from the impingement of the laser
beam on the ground electrode is plotted above the current profile emitted from
the secondary electrode due to the first reflection of the compressive wave. Apart
from the expected amplification of the reflected current by a factor of 2 above the

........ •'....... .t- t t .. ...t~ .. .... .. .

A

Figure 8. Evidence of the planarity of the travelling stress wave.
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Figure 9. Comparison of the predicted and measured profiles of the stress pulse.

input signal, the two profiles are quite similar in the main portion, but differ in
the structure of their tails. This similarity is taken as evidence of planarity of
the main pulse.

Figure 9 shows a direct comparison of the predicted and measured profiles ofthe input stress pulse for a fluence of 34,600 J/m2 (with distinct melting

behavior of the gold film). Figure 9 shows that the predicted profile of the stress
pulse for an emissivity of 0.18 for the gold film is clearly similar in broad
outline to the profile measured by the PE device. The amplitudes of the
experimentally recorded pulse and the predicted ones are remarkably similar. This
is very encouraging for the simulation, as the ultimate aim in this exercise is to
predict the stress amplitudes at the substrate/coating interface. Figure 9, which
shows the structure of the recorded pressure pulses for an absorbing gold film,
demonstrates the presence of two compression peaks with an intervening deep
depression which in the simulation of Fig. 4 appeared as a tension peak. The
depression in Fig. 9 has remained in the compression region and has not gone
into tension as the simulation predicts. This currently remains a discrepancy that
must be resolved. This, however, is of little interest in the present strategy as
the laser fluence required to spall the test coatings is sufficiently high to cause
the melting of the gold film. Therefore, the computer model can be used with
sufficient confidence to predict the interface stress histories in other
substrate/coating pairs of interest to researchers in the thin film area. The
in-face : determined from the amplitude of the interface stress history
plots of the type shown in Fig. 5.
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V Spallation Experiments

The spallation technique was applied to three substrates consisting of Si
single-crystal wafers with (100) plane surfaces, Pyrolytic graphite (PG) platelets
with the principal axis of layer normals lying in the plane of the platelet, and
Pitch-55 (P-55) type carbon ribbons of 600Om width and 35/pm thicknels
having a meso-phase morphology very similar to the Pitch-55 carbon fibers .
Detailed description of the morphology of the Pitch-55 ribbon can be found in
Gupta and Argon (1990) and for PG in Gupta et al. (1988). In all these cases,
the coatings to be removed were amorphous SiC coatings deposited by the
plasma-assisted chemical vapor deposition technique. The coatings had a
thickness of about 1-3 p n. They were deposited in a nearly stress free manner
by maintaining the substrates at a certain temperature to prevent the entrapment
of a significant concentration of hydrogen, which otherwise would have resulted
in high residual compressive stresses and premature delamination in a manner
described in detail by us earlier (Argon et al. 1988).

The Si/SiC, PG/SiC interface systems were tested in an experimental
configuration of the type shown in Fig. 2 (a), whereas for the P-55/SiC system,
the setup of Fig. 2 (b) was employed. The coating could be successfully spalled
off in all cases with appropriate levels of laser pulse energy. The taiushold laser
energy at which spallation occurs was recorded using a light power meter. Since

Figure 10. Spilled spot of SiC coating from Si single crystal.

l1ese exploatry Pitch-55 ribbons were specially prepared and furnished to us

by the textile Fibers Department of the DuPont Company for which we are
grateful to Dr. E. M. Schulz.

.5 .
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the amplitude of the stress pulse should depend upon the absorbed laser fluence,
the diameter of the laser beam was recorded on photographic film for the
tabulation of the threshold laser fluence, as mentioned above.

(a) SilSiC interface: Figure 10 shows a micrograph of the spot from which
the SiC coating has spalled off. The laser fluence necessary to achieve this
spallation is 7,388 JIm2 . The interface strength corresponding to this laser
fluence as calculated from the computer simulation is 5.29 GPa. The thickness
of the amorphous SiC coating of low modulus, deposited at low ion beam
energy, was 1.5 pm. The dark portions of the micrographs are the regions
where the SiC coating still adheres to the Si substrate. The islands of SiC
within the spalled spots are due to the statistical variability of the interface
strength over the delaminated spot. The interface strength varies from 10.19 GPa
to 10.88 GPa, which is surprisingly low (only 7%) for a brittle interface.
The clean flat structure of the interface shows that the SiC coating has come off
uniformly from the substrate at the interface. In order to verify this, Auger
electron spectroscopy (AES) was performed on the spalled spot to determine the
location of the failure. The irregular pattern at the rim of the spalled spot is due
to the partial delamination and breaking of the coating at the circumference of
the spalled coating. It was possible to successfully delaminate coatings of
thicknesses ranging from 0.3 to 3 pm.

Finally, the actual interface strength values for the various SiC/Si systems
produced by using different deposition parameters (of the SiC coating) vary from
3.7 GPa to 10.88 GPa. While such a variation may appear disappointing, this
degree of freedom is exactly what is required to carry out the interface
delamination scheme in composites as outlined in Section I. The interface
strength between the carbon and the SiC interface is of interest in such an
endeavor. These measurements are discussed next.

(b) PGISiC coating interface: Figure 11 shows a spot from which the SiC
coating of 2.1 pn thickness is spalled off from the PG surface. The substrate
disc was 1.69 mm thick. Interestingly, the spalled pattern is elongated along the
edges of the graphitic planes that terminate perpendicular to the surface. This is
also the stiffest direction in that plane. For this case the interface strength is
determined to be 3.68 GPa. These calculations also include the anisotropic
character of the PG substrate. Since the surface techniques available were not
able to distinguish the carbon of the SiC from that of the PG substrate, the
depth of the crater as determined by a mechanical profilometer (to an accuracy of
2.5 to 10 nm) compared remarkably well with the thickness of the deposited
SiC coatings, thereby confirming the failure at the interface. Interface strength
values ranging from 3.4 to 7.48 GPa were obtained for different SiC coatings.

(c) RibbonlSiC Coating Interface: Due to the presence of inhomogeneities
and the weak (transverse) strength of these ribbons across lamellae, failure was
predominantly observed to be within the ribbon. However, in some cases,
failure at the interface was also observed. Figure 11 shows a high magnification
view of an edge of a spalled coating. The coating is intact on the left of the
micrograph and is removed from the right side. For this sample, an average
interface strength value of .240 GPa was obtained. These calculations also
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include the anisotropic character of the ribbon material. A part of the same
ribbon was tested without the coating in order to determine the transverse
strength of the ribbon. A value of 0.26 GPa was obtained. As expected, this
value is higher than the interface strength observed on the same ribbon/coating
system. Interface strength values ranging from 0.22 to 0.24 GPa were obtained

Figure 11. Spalled spot of SiC coating from the Pitch-55 ribbon.

Figure 12. Spalled spot of SiC coating from PG substrate.
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for the Pitch-55 ribbon/SiC system. In all the above cases, the location of the
failure was confirmed by matching the coating thickness to the depth of the
spalled spot determined from a high-precision profilometer. The interface
strength determined from this test is significantly lower than that obtained from
the PG/SiC system. This is probably due to the inhomogeneities on the ribbon
surface (see Gupta 1990 for the structure of the ribbon), which act as sizable
interface flaws and lead to lower strength values. In view of the poor structural
integrity of the ribbon material, the PG/SiC system appears to be a better
candidate for determining the properties of the Pitch-55 fiber/SiC interface.
Nevertheless, the values obtained from both the systems are greater than the
desired level of interface strength of 200 MPa for interface delamination in the
SiC coated Pitch-55 fiber/aluminum matrix composites (Gupta 1990). Thus, it
is necessary to impair the interface strength by implanting embrittling agents at
the interface during the coating deposition process. This could be achieved by
planting a few atomic layers of either Na, Sb or As. Recently, Rice and Wang
(1989) have theoretically explored the effect of such foreign agents on the
interface toughness. Similar effects need to be experimentally achieved in the
present work in an attempt to bring down the interface strength levels.

Since the interface is loaded by a stress pulse that is external to the material
system, the laser spallation experiment is capable of determining the interface
strength for any thin film interface. To encourage the wide applicability of the
laser spallation experiment, the results of the computer code, which has been
verified by the piezo-electric probe, are furnished as generalized interface stress
charts so that researchers interested in using the technique do not have to
reproduce the computer code. These results should make such strength
measurements possible in most systems of interest to workers on composite
materials.

VI Interface Stress Charts

The intent of this section is to present generalized interface stress charts for
various substrate/coating pairs so that researchers interested in using this
technique do not have to reproduce the computer model. It is not possible to
give results for exhaustive sets of substrates. Here, we give results for four
substrates only, spanning wide ranges of H. and Ks values. An empirical
scheme for obtaining the stresses at other substrates (with arbitrary values of
H5 and K s values)/coating interfaces can be found in Gupta (1990). Since the
stress pulse generated in the substrate is independent of the test coating on its
front surface, the interface stress can be further normalized as

where co is the normalized stress, defined before in Section 3.2 and T is the
acoustic transmission coefficient at the substrate/test coating interface, defined s

$
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T= 2 f --c

f + (8)

where Pc, Ec and Ps, Es are respectively the density and Young's modulus of
the test coating and the substrate medium. With the above normalization, it is
possible to determine the stress at the interface between a substrate and coating
of any ranaterial provided the elastic properties of the two media are known
apriori in order to calculate the acoustic transmission coefficient T. A typical
interface stress chart is shown in Fig. 13. This chart can be used for any
substrate with the same Hs and Ks values. A catalogue of interface stress
charts valid for other systems can be found in Gupta (1990). Thus, the threshold
laser fluence determined from the experiment can now be converted into the
actual strength values via the interface stress charts over a wide range of
substrate/coating systems of interest to researchers in tic device and thermal
spray industries.

Due to the absence of any gripping effects, the spallation experiment also
provides a good measure of the intrinsic strength of thin coatings and single
crystals. The results of such measurements can be found in Gupta et al. 1990.

C
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Fig=r 13. A typical interface stress chart.
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VII Discussion

The tensile strength of the interfaces between two media in many instances
determines the overall strength of a heterogeneous solid. For example,
considerations of initiation of cavities on interfaces of particles is of interest in
understanding the initial phases of the ductile fracture in metals and alloys.
Similar considerations abound in composite materials where the tensile strength
of interfaces between reinforcing fibers and the surrounding matrix, or between
the fiber and a protective coating is often of major importance. The
measurements of such strengths in macroscopic experiments has been attempted
by many investigators but is not free of problems. :n most of the reported cases,
part of the interface is subjected to high stresses in an inhomogeneous
deformation field. The magnitudes of these stresses need to be determined
through the solutions of complex boundary value problems of elastic and plastic
deformation. While these attempts have often given operationally useful
answers, the factor of uncertainty in them has been considerable because of the
inadequacy of the solution of the local deformation problems. The measurement
of strength between a substrate and a thin coating presents particular difficulties
in the application of the stress by an inhomogeneous local deformation field
where premature failure elsewhere is likely, before the desired interface can be
probed.

It is in these latter cases that the laser spallation technique is an attractive
alternative, provided that the interface to be probed can be obtained in planar
form. If the coating to be pried off is of thickness Ac , the required stress
pulses with widths of roughly the same magnitude as the coating thickness can

be achieved by a laser pulse of duration Atl.,

--- pC/k (9)

where p, C, and k are the density, specific heat and thermal conductivity of the
energy-absorbing film in which the primary thermal misfit is being generated.
Thus, for an energy-absorbing film of Au, the required laser pulse duration to
pry off a coating of 1 m thickness is about 8 ns. This is readily achievable
with many pulse laser systems. The three-part strategy which we have outlined
here furnishes an operationally attractive means of measurement of the strength
of planar interfaces that can be made part of a laser spallation probe. In this, the
fundamental tool is the computer code which permits a reliable means of
simulating the generation and propagation of elastic waves in the substrate. The
basic results of this code, which have been broadly verified by the piezo-electric
probe for various material pairs, are provided in the form of interface stress
charts presented in Section VI. These results should make such strength
measurements possible in most systems of interest to workers on composite
materials by using the interpolation scheme furnished in Section 6.4.

Tensile strength of interfaces between amorphous SiC coatings and

4
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substrates of Pyrolytic graphite, Pitch-55 carbon ribbon and Silicon single
crystal discs were explored in the present investigation. The average interface
strength for the SiC/Si pair determined from the experiment ranges from 3.7
GPa to 10.88 GPa, depending upon the deposition conditions for the SiC
coating. Average interface strength values ranging from 3.68 to 7.48 GPa for
the PG/SiC system and 0.22 to 0.26 GPa for the Pitch-55 fiber/SiC system
were obtained.

Since the tensile stress causing the interface delamination is built up as a
result of the reflection of the main compressive pulse from the free surface of
the coating, it is necessary that the length of the initial compressive pulse is of
the same order as the thickness of the SiC coating. This will ensure building of
sufficient tensile stress at the interface to cause interface failure. It was found
that SiC coatings of thicknesses 0.3 to 3 Mm could be readily removed from
substrates. In order to spall even thinner coatings from the substrate, it will
become necessary to use picosecond laser pulses in place of nanosecond ones as
employed in the present investigation. Results of the numerical exercise in
Section III indicate other interesting possibilities to delaminate very thin
coatings (<1 pum thick) from substrates, that are of considerable interest to
researchers in the semiconductor and device industry.

While the interface tensile strength is an important quantity required to
determine the critical initiation conditions in interface separation, in flawed
interfaces or in cases when the propagation of an existing crack along the
interface is the determining factor, the most relevant quantity required is the
fracture toughness Kc or the critical energy release rate Gc for the propagation
of a crack along the interface. A measure of this can also be obtained with the
laser spallation method, if well characterizable and reproducible flaws can be

Figure 14. Spalled pattern on a contaminated interface.
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placed on the interface, so that the cracks emanating from these can be
propagated under a critical reflected tensile stress pulse that can provide the
required G c or produce the Kc.In a prelim'in,y experiment where some local
interface contamination of an undetermined nature had apparently occurred during
the deposition of the SiC coating, flaws of a potentially interesting type were
implanted on the interface. When this specimen was subjected to a typical laser
pulse, the coating spalled off independently from individual spots as shown in
Fig. 14. Clearly, under the condition of the reflected tensile stress pulse, which
probes the interface, a central crack is formed in the area of the interface flaw
where a much reduced level of interface strength must have been present. After
the crack had propagated radially outward a certain distance, the effective ratio of
the crack tip stress intensity factors KI and KII had apparently undergone
almost two full reversals of sign before the delamination is complete. This has
resulted first in an excursion of the crack away from the interface into the
coating, to be followed by a sharp reversal returning the crack back to the
interface, only to be followed by another reversal putting the crack into the
coating again where it continued to propagate to final fracture. Evidently, two
separate effects: the bi-material nature of the field in which the crack propagates
(Rice, 1988), and the dynamic nature of the crack propagation process (Freund,
1976) produce important changes in the driving forces that propagate the crack
must be better understood, before an interpretation of the phenomenon can be
attempted to extract a precise value of the interface fracture toughness out of the
experiment. Nevertheless, it is clear that the potential for the measurement of
the interface toughness is present in the laser spallation experiment.
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Abstract

The present paper is concerned with composites in
which the constituent interfaces are weak in shear and
therefore exhibit shear deformation associated with sliding.
Thermomechanical loadings of such systems are considered
which consist of homogeneous traction or displacement
boundary conditions and a uniform temperature change on the
outside surface of the composite. For binary systems with
isotropic constituents, it is shown that the actual fields in the
purely thermal problem can be uniquely determined from the
solution of the purely mechanical problem. This
correspondence relation is used to determine the effective
thermal strain and stress tensors on the basis of the effective
mechanical properties. For multi-phase systems with
anisotropic constituents undergoing interface slip and
separation, the theorem of virtual work is used to establish a
similar relation between the effective thermal tensors and the
mechanical concentration factors and constituent properties of
the composite.
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Introduction

Thermal problems in heterogeneous media have drawn
much interest in the last years due to the increasing
importance of high temperature composites. Several
fundamental aspects in the micromechanics of composites in
the context of thermomechanical problems have recently been
investigated by the authors, Dvorak (1986), Dvorak and Chen
(1989), Benveniste and Dvorak (1989) where the reader can
find a list of references in the field.

Most of the work dealing with composites assumes
perfect bonding between the constituents. However, due to
poor bonding between the phases, a jump in the displacement
field may occur at internal boundaries, and it is of interest to
study thermomechanical problems in composites under such
circumstances. Determination of the effective properties
requires special attention in the presence of imperfect bonding,
and a proper framework for the investigation of such problems
has been laid down by Benveniste (1985). Interfaces which are
weak in shear may be modeled by demanding that the normal
displacements are continuous, but the tangential displacements
exhibit a jump which is proportional to the shear tractions.
For limiting values of the constant of proportionality, the
special cases of perfect bonding and lubricated contact are
obtained. Such models of a flexible interface which may also
include imperfect bonding in the normal direction have been
previously used in the literature, see for example Len6 and
Leguillon (1982), Benveniste and Aboudi (1984), Aboudi
(1987), Benveniste and Miloh (1986), Jasiuk and Tong (1989),
Achenbach and Zhu (1989), and Hashin (1990). The reader is
referred to these works for a further list of references on
imperfect interfaces. Recently, several problems of inclusions
which undergo pure slip at interfaces have been considered bl
Mura et al. (1985), Tsuchida et al. (1986), and Jasiuk et al.

The present paper is concerned with binary systems
with flexible interfaces in shear, and isotropic constituents. It
starts by establishing a correspondence relation between local
fields induced in such two-phase composites by purely
mechanical and purely thermal problems. These relations are
obtained by using a decomposition scheme on ginally proposed
by Dvorjk (1983, 1986), and further employed by Benveniste
and Dvorak (1989) in binary composites with anisotropic
constituents, arbitrary phase geometry, but perfect bonding

,j.
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between the phases. Recently, Dvorak (1990) has thoroughly
explored the implications of this concept in regard to the
existence of uniform fields in heterogeneous media. We show
here that this decomposition scheme can be generalized to the
case of two-phase media undergoing slip at interphase
boundaries, but with isotropic constituents. The
implementation of the scheme shows that local fields in such
composites which are induced by a uniform temperature
change at external boundaries can be uniquely determined from
the solution of the same system subjected to uniform overall
mechanical loading. In the second part of the first section of
the paper, the established correspondence principle is used to
derive the effective thermal strain and stress tensors on the
basis of the effective mechanical properties of the composite.
The second section of the paper is concerned with multiphase
composites with anisotropic constituents undergoing slip of the
above described nature at interphase boundaries. Only
effective properties are considered in this section, and a
generalization of Levin's (1967) and Rosen and Hashin's (1970)
result is derived using the theorem of virtual work. The
obtained results reduce correctly to those obtained in the
previous section for the case of binary composites with
isotropic constituents.

1. Correspondence Between Purely Mechanical and Purely
Thermal Problems in Binary Composites with Interfaces
Weak in Shear

la. General Theory

Consider a two-phase composite with isotropic
constituents, but arbitrary phase geometry. Let the
thermoelastic constitutive relations of the homogeneous phases
r = 1,2 be given by:

r = Lr r + r0 , r = 1, 2
(1)

fr = lr r + TrO

where .0 r, cr and 0 denote respectively the stress, strain tensors
-1

and temperature field, Lr and Mr = Lr are the phase stiffness

and compliance tensors, mr is the thermal strain tensor (of

It= V, m.._ .,.
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expansion coefficients), and 4r is the thermal stress tensor such
that r =- Lr mr. In this paper we will denote the matrix
phase by the index r = 1 and the inclusion phase by index
r=2.

The two-phase composite is assumed to have
constituents interfaces which are weak in shear and are
modeled by a jump in the tangential displacement which is
prescribed as proportional to the shear traction there. Perfect
bonding in the normal direction is assumed in this part of the
work; however, in the second part open cracks at interfaces are
allowed. Let p denote the unit normal vector at S12 pointing
from phase r = 2 to phase r = 1, and let u and t denote
respectively the displacement and traction vectors. The
interface conditions at S12 may be expressed in the following
manner. Let (p, q, s) be an orthogonal set of unit vectors at
S,2 where p derotes the unit normal vector. The components
of the traction and displacements vectors in this coordinate
system are respectively expressed as t = t + tq + ts, u = u
+ Uq + u.. The interface is then modeled by the following set

of equations:

[.1 s  =0 , [t]l 0
S12  S12

[qls12 
SR tq [Us 12  Q ts (2)

where R and Q are constants of proportionality for the
interface which is flexible in shear and a square bracket [ ] on
a quantity 0 denotes the jump in that quantity across S12 , that

is

[t] = S 1 t S,2 (3)

It is noted that for R - 0, Q -+ 0, perfect bondingin shear is
obtained, and that R --- oo, Q -+ oo yield t e case of
lubricated contact. The analysis which follows in this section
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is also valid if at part of the interfaces there exists imperfect
bonding (R # 0, Q # 0), and at other parts perfect bonding
prevails (R - 0, Q = 0); in fact different values of R and Q
may exist at different points in the interface.

Consider now purely mechanical problems in which the
outside surface of the composite is subjected to homogeneous
displacement or traction boundary conditions described by:

u(S)=ex O(S)=0

(4)
t (s) =O(S) = 0

where u (S) and t(S) denote the displacement and traction

vector at S, n is the outside normal to S, c and o0 are

constant strain and stress tensors, and finally x denotes the

components of a Cartesian system.
Let the local strain and stress fields induced in the

phases by these boundary conditions be denoted by
= Ar(x)0 , r(X) = Lr Ar(x)fo (5)

r(X) = Br()ao, er(X) = Mr Br(x)ao, (6)

with (5) and (6) corresponding to (4), and (4)2 respectively.

Furthermore, let us denote the jump in the displacement
vector at S12 by

S 12

S 12

again, under (4), and (4)2 respectively. Of course, the fields

(5), (6), and (7) satisfy the interface conditions in (2). Local
elds are denoted in this paper by the argument (x), whereas

expressions without such an argument will refer to average
quantities.
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Next, consider thermal loading problems in which the
surface of the composite is subjected to a uniform temperature
rise and to zero displacement or traction boundary conditions.

O(S) = 00  u(S) = , (8)

O(S) =00  t(S) = (9)

The local fields under (8) and (9) will respectively be denoted
by:

r()=a, (x) 0

Mx)= ( +r() + )00 , (10)

[Lr ((x b )
S12

= ( M r br( x ) +rmr)o ,(11)

PL ~]S12 =fx6

where the vectors d(x) and f(x) satisfy the interface conditions

in (2). We also note that a uniform temperature field will
prevail in the composite under (8) and (9).

It will be shown now that in the two-phase composite
with isotropic constituents characterized by the constitutive
relations (1)and the interface conditions (2), knowledge of the
tensors Ar(x), D(x) uniquely determines ar(x), dx), and

BrQx), F(x) determine br(X), f(x).
Let us first establish the correspondence between the

fields induced by (4), and (8). This is achieved by using the

decomposition scheme described by Dvorak (1986), and
Benveniste and Dvorak (1989) for the case of perfectly bonded
composites. We will see here that this procedure can be used
to establish the desired correspondence relations in the case of
interface conditions (2) for two-phase composites with
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isotropic phases. In the first stage of this decomposition

scheme we seek a strain field E which is uniform in V under a

uniform temperature change 00. This can be achieved by

demanding that e and 00 result in a uniform stress field:

L i+ o-L00  = +L2 E+ , (12)

so that the tractions at S12 are continuous. Equation (12)

yields for e:

(LI - 2) Q12 !J00 (13)

At this stage of the procedure, uniform strain and stress fields
prevail in the composite, and both the displacements and
tractions are continuous at S12. Also, it turns out that for the

isotropic constituents, the created uniform stresses are
hydrostatic, and shear tractions at S,2 vanish. Therefore, the

interface conditions at S12 described in (2) are automatically

satisfied. At the outside boundary S, displacements arising
from (13) have been now induced and, as demanded by (8)
they need to be reduced to zero. To accomplish this, we apply
the following displacements on S:

u (S) =-Cx ,(14)

and obtain

!r ( Ar()

[i (]s = -D(x) . (15)S (x 12 - --

By superposition with the uniform fields, the resulting
fields at the end of the decomposition scheme are therefore:

IN,



84

cr (x) = ) - L2) "- (2 - !J00 (16)

S12 = L ) ! )00 1)

with I being the fourth order identity tensor. The

concentration factors ar(X) and d(x) can be therefore read out

as:

a,(!) = - Ar((-) (L1 - 2) (12- !1) , (18)

I'dCx) =-D( ) (LI - L2)- (12 - !J (19)

The difficulty of extending the above procedure to
anisotropic constituents becomes now apparent. For such
constituents, shear tractions at S, 2 would exist after the
reassembly of the aggregate. To remove these shear tractions,
one would have to solve a boundary value problem in which
the S12 interfaces are loaded by the negative of the shear

tractions induced therein. Even though the solution of such a
boundary value problem can be formulated in principle, it is
not clear at this time that such a solution can be related to a
purely mechanical problem with prescribed overall strain.

The correspondence between the fields resulting from
(4)2 and (9) can be similarly established. In the first step, a

uniform stress field a is sought which together with a

temperature change 0 causes a in uniform strain field, and

therefore continuous displacements throughout. The condition
is

M-. + MI o = 2 .+ M2 0o (20)

it yields

M ¥- 2)" (M- TOO (21)
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Since some the constituents are isotropic, these stresses do not
result in shear tractions or displacement jumps at $12' To

comply with (9), we now remove the tractions induced on the
outside surface by (21), by application of:

(22)

which by themselves cause the local effects

i (23)
[u(X)j =-F(x)O(

S~- S1  - -
I

This is superimposed with the uniform field a to yield:

r(x) = (I - Br( )) (M I M2)"(T2 - ) 00, (24)

u S) 12 -~ x (M 1 -  M 2) '-1(M 2  - m1) 0 , (25)
" S12  ~.

The concentration factors thus are

Mx() = (I - B,(x)) (M I- M, )-ATC2 T 1) (26)

f~)=-F(x) (M I- M12)'ATm m T (27)

We have therefore established the desired
correspondence relations. It is of interest to note here that the
structure of (18) and (26), is similar to that given in
Benveniste and Dvorak (1989) for perfect bonding between the
constituents.
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lb. ADDlication: Effective Thermal Stress and Strain
Tensors

One of the applications of the correspondence principle
described in the previous section is the determination of the
effective thermal tensors of the composite based solely on the
information obtained from the mechanical problem. Suppose
therefore that the effective constitutive law of the composite is
described by

u=Le+IO

C=Mo'+mo , (28)

where L and M with M = L denote respectively the effective

stiffness and compliance tensors, I and m with I = -L m are

and c, and the temperature 0 refer to average quantities.

The tensors I and m are determined in principle by

subjecting the composite to boundary conditions (8) and (9)
respectively. Let us first consider the determination of 1. It is

important to note here that since displacement jumps occur at
constituent interfaces, special care should be taken in defining
average quantities in the composite, and the reader is referred
to Benveniste (1985) for a proper framework for the
computation of effective properties in these situations. Under
(8), the average strain in the composite vanishes, therefore in
accordance with the quoted paper

C= ceI+c 2 ! 2-c 2 J= O  , (29)

where J is a second order tensor representing the deformation

at internal boundaries, and is given by:

i - -f ([uj. pj + [uj] pi) dS12  (30)
2V 1
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where pi was defined in (2); cr and cr with r = 1, 2 denote the

phase volume fractions and phase strain averages respectively,
and V is the volume of the composite. The average stress in
the composite, in view of (1),, (28)1, and (29) is given by

01 = clO* + c2a 2 =

= c1(L 1! 1+1 100) + c2(L2! 2+120 0) = 1 00 (31)

where we have used the fact that a uniform temperature

prevails throughout. Elimination of C2 from (29) and

substitution into (31) provides:

1 = C1 + c2!2 + c(L2  - ) a2 +cL . , (32)

where the concentration factors are defined as in (10):
e!2=a 00 J=a00 (33)

The tensor a2 is simply the average of a2(x) in (18), and is

given by

a2 = (I - A2)(LI - 1a2)- (12 - .j) (34)

where A2 is again the phase volume dverage of A2 (x). The

tensor a is obtained by substituting (10)3 and (19) into (30):

-1

=-A (L- )(s .),(35)

with the concentration factor J = A defined as:

Aijkl 1 (Dikl ( j) p, + Djkl (x) pi) dS12  (36)
2Vs

12
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Substitution of (34) and (35) into (32) provides

= -ci ltl + C 2 + 
t

+ c2(L2 - A)( _ - 42)( - 2)-(2 - l)

-c C2 A (L,- 2)-' (!2 - !) , (37)

hence t has been determined in terms of the constituent phase

properties and the mechanical concentration factors A2 and A.

Equation (37) can be further simplified. To this end,
recall that the effective stiffness L of the composite is obtained

by bubjccting the external surface S to (4), and using the fact

that

C-= Cll + C2!2 - C2j -- " ! 0  (38)

After some manipulations this leads to (Benveniste (1985)):

L = L1 + c 2 (L2 -L1) A 2 + c2LA . (39)

Solving for A2 in (39), and substituting into (37), we obtain:

1=4 + (L - L)(L2 - ) - -- A2 ) (40)

Equation (40), interestingly enough, is the same as equation
(3.11) in Henveniste and Dvorak (1989). Note however that
imperfect bonding at Si2 as described in equation (2) still

affects the effective thermal tensor t, since L itself is affected,

as in (39).
The determination of m follows similar steps, this time

under the stress boundary conditions (9). It leads to a set of
equations which are counterparts to (29), (31) and (32):

= c1 t + c20 = 0 , (41)

. = C1 1 + C2! 2 -c2Y = c,(MI.l + M100) +
+ c2(M2a 2 + rn200) =MOO (42)

W-
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rn = crn1 + c2M 2 + c2(M2 - M'1)b2 - C2b , (43)

where we have defined the concentration factors b2 and b as

follows:

J = 00.- (44)

In analogy to (34) and (35), these tensors can be written in the
form:

-1

Q (!- B2) (M - M12) (M2-mn) , (45)

b =- (MI - M2) I (M2-mn) , (46)

with

Bijkl f (Fikl(x)pj + Fjkl(X)pi) dS 12  (47)

2V SO

The equation for m, finally becomes:

In = cImn + c2 -2 +

+ C2(M2 - MI)I - B2)(M1 - M12)- inm m)

+ c2B(M1 - M 2)'(m 2  r) (48)

The expression for the effective compliance tensor (Benveniste(1985)),M = M I+ C2 (M 2 - M,)B 2 - c2 B , (49)

helps to reduce equation (48) to the form

M = I m + ( M) (M2- M,) I (2- TO (50)

which is the counterpart of (40). Using , rmr and the
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-I

fact that L M1 , one can verify that I and m as given by (40)

and (50) fulfill the relation t = -Lm.

We have utilized here the correspondence relations
established in the previous section to derive expressions for the
effective thermal tensors I and m in terms of effective

mechanical properties of the composite. The correspondence
relations are limited to isotropic constituents, and therefore,
the derived equations (40) and (50) apply also to such systems
only.

Expressions for the effective thermal tensors in terms of
effective mechanical properties have been given before in the
literature for the case of composites with perfectly bonded
anisotropic phases. The basic idea was due to Levin (1967)
which used the principle of virtual work to this end. Levin's
paper was extended to anisotropic constituents by Rosen and
Hashin (1970), see also Laws (1973) and Schulgasser (1989) for
an alternative derivation of these relations. We will show in
the next section that the virtual work theorem can again lead
to equations similar to (40) and (50) for the case of multiphase
materials with anisotropic phases and imperfect interfaces of
the type described in (2). It should be of course made clear
that in spite of its limitation to isotropic constituents in the
present case, the decomposition scheme is in a sense more
general than the results provided by the virtual work theorem
since it provides results onfields and not only on average
properties.

2. Effective Thermal and Stress Tensors in Multiphase
Composites with Anisotropic Constituents and Interfaces
Weak In Shear

We consider now multiphase composites described by
(1) and (2), but allow this time for general anisotropic
behavior in for the phases. As in Section 1, different parts of
the interfaces may possess different values of 0 - R , o and 0
., Q < oo. An expression for the effective thermal stress
tensor t in terms of purely mechanical properties will be first

derived by considering the boundary conditions (4), and (8).
For convenience, we let the fields induced by (4), be denoted

by primed quantities and those resulting from (8) by urprimcdI __ _ _ ___ _ _ _

If .

PL -~4 . -7'i r iim m UGi~lB B mnlu
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quantities. The principle of virtual work for composites with
imperfect interfaces can be found in Benveniste (1985). When
applied to the boundary value problems (4), and (8), it can

be written as:

f 1i~xQ (x)dV

V

f ti(x) ;(x)dS + ti(x)[ui(x)]dSr , (51)

S r=2S Ir

where t i and ui denote the traction and displacement vector,

r = 1 stands for the matrix, and Sir denotes the boundaries of

the inclusion phases with the matrix.
Substitution of aij from (1) into (51) yields:

Lijkl'Ekl(.) cij(x) dV + f ij cij(x) OodV
V V

N

= t(x)ui(x)dS + If ti(x)[ui(x)]dSr, (52)
S r=2S lr

with the material properties assuming the index r = 1, 2, ... N
depending on the position of the point x in the composite. For

the boundary condition (4),, the first integral on the right

hand side of (52) can be simplified as:

ti(x)ui(x)dS x0fS~ ~ -f ti(x)fixd

S S

0 f Oik (x)nkxjdS

S
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0 0
" ij a'ij V = f ij tij O0V (53)

where, oij denotes the overall average stress, and the fact that

the average strain vanishes under (8) has been used.
Substitution of (53) into (52) gives:

Lijkl Ckl (x)fij (x)dV + f ij f j(x)0 dV

V V

(4 0i(x)] dSjr + eij 4i o V . (54)

r-2 S ir

The virtual work theorem is now applied to the
boundary value problems (4), and (8) with the alternative

choice of admissible displacement and stress fields; the fields in
(4), are denoted by primed quantities and those in (8) by

unprimed ones. The result is:

f Yij (x) cij(x)dV
V

N

f tl(x)u(x)dS + f t(x)ui(x)dSr, (55)

S r=2S ir

fLijkl Ekl(X) .ij (x)dV
V

N

= t(x)[uj(x)]dSh (56)

r-2S ir

where we used the condition ui(S) = 0. Subtraction of (56)

from (54) yields
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ir) (r)

rr

V ti(x)[u'i(x)] _ ti(x)[ui(x)]l dS ir

r=2 Sir

+ ti± . 0o (57)

The integral on the right hand side involves the scalar product
between the traction vector in one loading system and the
displacement jump vector in the second system. The interface
conditions described in (2) make this term vanish. Equation
(57) therefore yields:

NN cATI
wer E Cr Ar r, (58)

where we have invoked the definition of the concentration
factors Ar and reverted again to the bold face tensorial

notation. The transpose sign in (58) denotes:

(Ar)ijkl = (Ar)klij . (59)

It is somewhat surprising to see that equation (58) is
the same as Rosen and Hashin's (1970) result for perfect
bonding between the phases. Note however that due to

T
interface slip, the tensors Ar are not equal to those which

would be obtained under perfect bonding conditions. We
finally mention that if part of the interfaces at S 2 contain open

cracks,(58) remains valid since the tractions at these
boundaries vanish identically if all crack closure effects are
neglected.

For the case of binary composites equation (58) can also
be written in other equivalent forms with one among them
making contact with the results obtained in the previous
section. Under (4),, note that

. .v . .= J l t m l m - I
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cA + c2 A2 -c 2A = , (60)

where A was defined in (36). Solving for cAI in (60) and

substituting in (58) provides:
- - +c 2 AT(1 1 )+c 2 A T  

. (61)

Another form can be obtained by writing first (39) as:

L=L + c 2A(, 2 -L1 ) + c2 AT  , (62)

where the diagonal symmetry of the rtiffness tensors has been

invoked. Solving for A2 in (62) and substituting into (61)

provides:

S= 1,+ (L -L,)(L2 - (1)2-1_) +
+ C2 AT {- ,(L2- L . . (63)

Equation (63) is the counterpart of (40) of the previous section
for the case of anisotropic constituents. Let us next prove that
in the special of isotropic phases the last term in (63) vanishes.

For isotropic phases let,

(I)ij = a ij,

(LI)ijs = 6 ij 6rs + 7(bir 6js + 6.j 6 6 ij'6

(L-L)rmn =rsmn + nr m +6sn +6brm- nb.66)

(!2 - -)mn =A mn , (64)

where a, fl, % , C, A are constants. Writing AT in indicial

notation and carrying out the summation in (63) according to
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(64) shows that the tensor AT enters only as (AT)pqii.

However, since according to the interface conditions (2) the
normal displaccments are continuous at S12 it follows from (36)
that A iki- 0 or, in fact, (AT)pqij 0. We have therefore

shown that for the case of isotropic constituents (63) reduce to(40). A similar implementation of the virtual work theorem
(51) to the boundary value problems (4)2 and (9) yields

equations for the thermal strain tensor m. For the sake of

brevity we will give only the final results, counterparts to
equations (58), (61) and (63). These are:

m= E crBrmr (65)
r-1

m= m1 + c BT(m 2-m 1) (66)

-1
Mr= mj + (M - M)(M2 - Ml1)'(m- (M) +

+ c2 B (M2 -M ) (b- mrn) (67)

where the last two equations refer to binary systems only. It is
noted that the structure of (66) and (67) are not exactly
similar to (61) and (63) respectively. This is due to the fact
that e and a in (29) and (31) and also (39) and (49) have a

different structure. For the same reasons mentioned above
equation (67) reduces to (50) for the case of isotropic
constituents.

Finally, it is easy to show that I and m, as given by

(58) and (65) for example, satisfy I = -Lm. From the
-I

definitions of the Ar and Br tensors and also due to L -M ,it

results that

=L A r= 1,... N (68)

, r ri,

: 41
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which provides

LBr AT Lr r= 1,... N (69)

Multiplying (65) by (-L) from the left, using (69) and Ir =

-Lrmr shows readily that (58) is in fact recovered.
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Micromechanical Modelling of Fibre
Debonding in a Metal Reinforced by
Short Fibres

Viggo Tvergaard

Department of Solid Mechanics

The Technical University of Denmark, Lyngby, Denmark

ABSTRACT - Failure of a whisker--reinforced metal-matrix composite by decohesion of the
fibre-matrix interface is analysed numerically. A cohesive zone model that accounts for decohe-
sion by normal separation as well as by tangential separation is used to model failure at the
interface. The composite material containing a periodic array of aligned fibres is represented in
terms of a unit cell model analysis. The effect of varying fibre aspect ratio and varying fibre
volume fraction is investigated, and the sensitivity of the predictions to mesh refinements is
studied.

1. INTRODUCTION

When aluminium alloys are reinforced by SiC-whiskers, in order to improve the

tensile properties, the ductility and the fracture toughness are simultaneously re-

duced, due to early void formation by debonding at the matrix-fibre interface
(Divecha et al., 1981; McDanels, 1985). A number of investigations of this debond-
ing behaviour have been carried out to improve the understanding of the influence
of different m t erial parameters.

Needleman (1987) has modeled the debonding of an inclusion from a metal matrix

in terms of a potential that specifies the dependence of the interface tractions on

the interfacial separation. The formulation was used by Nutt and Needleman

(1987) to study the onset of failure by decohesion at the fibre ends, and good quali-

tative agreement was found between the theoretical predictions of initial void

shapes and experimental observations. Further analyses of the effect of fibre vol-

ume fraction and fibre spacing on debonding predictions were carried out by

Needleman and Nutt (1989). In a more recent paper Tvergaard (1989) has proposed

an alternative cohesive zone model that describes decohesion by purely tangential
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separation as well as the decohesion by normal separation considered previously

(Needleman, 1987). In addition to the failure initiation by void formation at the

flat fibre ends this alternative cohesive zone model makes it possible to also study

the continued failure process by fibre pull-out.

The assumption will be made here that all fibres are parallel to the principal tensile

direction. This is realistic, since processing based on extrusion can lead to almost

perfectly aligned fibres (Nieh, 1984; German and Bose, 1989). The same assump-

tion has been used in a number of analyses of the tensile properties of perfectly

bonded composites. Teply and Dvorak (1988) have applied minimum principles of

plasticity to derive upper and lower bounds on instantaneous stiffnesses for various

periodic models of fibrous and particulate composites. Christman et al. (1989a)

have used an axisymmetric unit cell model, representing a regular array of end-to-

end fibres, to account for the cylindrical whisker shape with sharp 90-degree cor-

ners at the ends that is usually observed experimentally. An alternative model

developed by Tvergaard (1990) represents fibres that are somewhat shifted relative

to one another, both in the axial and transverse directions. The shifted fibres result

in significant plastic shearing of the matrix material between adjacent fibre ends,

and the predictions of this alternative model are in reasonable agreement with ex-

perimental uniaxial stress-strain curves found by Christman et al. (1989a) for a

2124 Al-SiC whisker reinforced composite. The effect of shifted fibres and of fibre

clustering have also been studied in terms of a plane strain model by Christman et

al. (1989b).

The present paper gives an extension of the previous fibre-matrix debonding study

(Tvergaard, 1989) to consider the effect of varying fibre volume fraction and vary-

ing fibre aspect ratio. Furthermore, the sensitivity of the debonding predictions to

refinements of the mesh used for the numerical solution is studied in some detail.

2. DEBONDING MODEL

Debonding of an inclusion from a metal matrix has been modeled by Needleman

(1987) in terms of an interface potential that specifies the dependence of the trac-

tions T. and Tt on the normal and tangential components, un and ut, of the

displacement difference across the interface. A positive un corresponds to increas-

ing interfacial separation. These interface constitutive relations specify the nonline-

ar variation of the normal traction T. from the value 0 at un = 0 through a

ma3imum value 5mw and again down to the value 0 at u. = 6,bn where final

.......... ...... dmu 'WW I F
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separation is assumed to occur. This debonding model describes only debonding by

normal separation; but during fiber pull-out under significant normal compression

the positive normal separation U. required for debonding in Needleman's model

will not occur. Therefore, an alternative debonding model was proposed by Tver-

gaard (1989), which coincides with that of Needleman (1987) for an interface un-

dergoing purely normal separation (ut E 0). No potential exists in general for this

alternative debonding model.

A nondimensional parameter A is defined as

A= LTuf]+ fi 2 (2.1)

and a function F(A) is chosen as

F(A) = 27 Gmax(1-2A+A2) , for 0 < A < 1 (2.2)

Then, as long as A is monotonically increasing, the interface tractions are taken to

be given by the expressions

T =uo F(A) , Tt fu F(A) (2.3)

In purely normal separation (ut = 0) the maximum traction is amax , total separa-

tion occurs at U. = 4., and the work of separation per unit interface area is

9a,&xbf/16. In purely tangential separation (Un = 0) the maximum traction is

aoamax, total separation occurs at ut = t, and the work of separation per unit

interface area is 9aumax 6t/16 . For a given interface the values of the four parame-

ters 4n, bt, '7 ax and a will have to be chosen such that the maximum traction

and the work of separation in different situations are reasonably well approxi-

mated.

The expression (2.3a) for T, resembles the dependence of interatomic forces on

interatomic separation; but in the present paper the cohesive zone formulation is

viewed as a phenomenological model, which represents the average effect of de-

bonding mechanisms on a somewhat larger length-scale than atomic. These mecha-

nisms include the effect of small flaws or patches of poor bonding, or void forma-

tion in the matrix material near the interface as observed experimentally by

Christman et al. (1989a). As has been discussed by Tvergaard (1989), it is expected

that the behaviour due to plastic failure mechanisms at a metal/ceramic interface
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is analogous to the behaviour for ceramic/ceramic interface cracks, where the criti-

cal energy release rate has been found to be larger in mode I1 conditions than in

mode I conditions. The present debonding model represents this in terms of the

factor a for the strength increase in purely tangential separation and the factor

ba b for the increase of the work of separation.

The incremental expressions for the cohesive zone tractions are obtained from (2.3)

as

u? un OFA
t F(A)+ for A=Aax<and A>

(2.4)

where

OF = 27 O +A) fu 6- +ut itl (2.5)

For decreasing A a type of elastic unloading is used to represent the partly dam-

aged interface

Tn= F(Aax), TI &tF(Aax) ,for A <Amax or A< 0

(2.6)

Finally, under normal compression elastic springs with high stiffness are used to

approximately represent contact (instead of (2.4a) or (2.6a)), thus taking

27- O n A =, A I , for u,<0 (2.7)

Friction between fibre and matrix after the occurrence of debonding is often an

important effect in fibre pull-out problems. Such friction is readily incorporated in

the present formulation, as has been shown by Tvergaard (1989) for the case of

Coulomb friction. However, since the influence of friction found by Tvergaard

(1989) was rather small, this effect is not included in the present study.

~~*I.II
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3. CELL MODEL ANALYSIS

A convected coordinate, Lagrangian formulation of the field equations is used for

the analysis, in which gij and Gii are metric tensors in the reference configura-

tion and the current configuration, respectively, with determinants g and G , and

}ij = (Gij - gij) is the Lagrangian strain tensor. The contravariant components

TiJ of the Kirchhoff stress tensor on the current base vectors are related to the

components of the Cauchy stress tensor aiJ by

riJ = 4-GTg oii (3.1)

The matrix material deformations are taken to be described by a finite strain gen-

eralization of J2 flow theory, in which the incremental stress-strain relationship is

of the form f-ii = Lijkl kj , with the tensor of instantaneous moduli given by

Likl - {i(GikGi 7 + GilGk) + v Gjikl

-(Gikrj1 + Gjkril + GilTik + GjlT ik) (3.2)

Here, the effective Mises stress is ae = (3sijsij/2)? , sij = 7-ij - GiJrk/3 is the

stress deviator, and the value of 0 is 1 or 0 for plastic yielding or elastic un-

loading, respectively. Furthermore, E is Young's modulus, v is Poisson's ratio,

and Et is the slope of the true stress vs. natural strain curve at the stress level

oe. The uniaxial stress-strain behaviour is represented by

0 ,for o < ay

(3.3)
[a07 n nfor a> ay

y YG

where ay is the uniaxial yield stress, and n is the strain hardening exponent.

An axisymmetric cell model analysis is used to approximately represent a material

with a periodic array of aligned fibres as that shown in Fig. 1 (Tvergaard, 1989). A

cross-section perpendicular to the fibres (Fig. lb) shows a square array of fibres

with spacing 2ac, and the initial radius rc = (2/nr ac of the axisymmetric model

4.4
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III

2a,

Fig. 1. Periodic array of aligned fibres. (a) Cross--section along fibres. (b) Cross-
section normal to fibres.

problem is chosen such that the fibre volume fraction of the cell is equal to that of
the material illustrated in Fig. 1. With the initial cell length ,, and the fibre
geometry specified by the initial half length If and radius rf , the fibre volume
fraction f is

cc (3.4)

The initial fibre aspect ratio at and cell aspect ratio ac, respectively, are speci-
fied by

af = f/rf , ac = 4/rc (3.5)

On the curved side of the circular cylindrical cell equilibrium and compatibility
with the neighbouring cells has to be represented. A neighbouring cell is identical
to that analysed, but is rotated 180 degrees so that it points in the opposite direc-
tion (see Fig. la). Compatibility and equilibrium in the axial direction are directly
specified in terms of the axial edge displacements and nominal tractions. In the

radial direction compatibility is represented oy the requirement that the total
cross-sectional area (consisting of an equal number of cross-sections of the two
types of neighbouring cells considered) is independent of the axial coordinate. The

detailed formulation of the boundary conditions is not repeated here (see Tver-
gaud, 1989, 1990).
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The average straining of the material is determined from the average displacement
gradients Fij , referring to a Cartesian frame, which are calculated as

Fij = bij + Vr S1 i uinjdS (3.6)

Here, bij is the Kronecker delta, V and S are the volume and surface, respec-
tively, in the reference frame, and uj and nj are the Cartesian components of the
displacements and the outward unit normal. The average nominal stresses Eij are
computed as the appropriate area averages of the microscopic nominal stress com-
ponents on the surface (considering both the cell analysed and one of the neigh-
bouring cells of opposite kind). The axial stress and gradient components are F4
and F11 , the transverse Cartesian components are E22 = 33 and F 22 = F33 for

the axisymmetric problem, and all shear components vanish. The average true
stresses a, and q2 and logarithmic strains c, and (2 in axial and transverse
direction are calculated from these values.

The fibres are approximated as rigid, to simplify the debonding analysis. It has
been found for perfectly bonded whisker reinforced composites (Tvergaard, 1990)
that predictions for elastic or rigid fibres differ rather little when plastic yielding
has occurred.

Numerical solutions are obtained by a finite element approximation, using a linear
incremental method based on the incremental principle of virtual work (described

in more detail by Tvergaard, 1989). The elements employed are quadrilaterals each
built up of four triangular, axisymmetric, linear displacement elements. The
meshes used for the computations are somewhat finer than those used by Tver-
gaard (1989), and an example is shown in Fig. 2. A special Rayleigh Ritz - finite
element method is applied to implement the boundary conditions and to enforce a

fixed ratio p = a2/at of the average true stresses in the transverse and axial direc-

tions, respectively.

Fig. 2. Mesh with 1792 elements used for some of the numerical analyses.
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4. RESULTS

The 2124 AI-SiC whisker reinforced composite investigated experimentally by

Christman et al. (1989a) had the fibre volume fraction f = 0.13 and the average

fibre aspect ratio at n 5 . Furthermore, the cell aspect ratio ac = 6 gives a reason-

able representation of the observed average fibre spacings in the axial and trans-

verse directions. The uniaxial stress-strain curve for this matrix material can be
approximated by the power law (3.3) with uy/E = 0.005 and n = 7.66. In the

analyses to be presented in the following these material parameters will be used,

and the influence of varying the fibre volume fraction or the fibre aspect ratio will

be investigated. In all cases uniaxial tension in the fibre direction is considered

(02 = 0).

In the first cases analysed the fibre geometry and spacing is taken to be specified

by f = 0.13, of = 5 and ac = 6. Different sets of parameters in the debonding

model (2.1)-(2.7) are investigated in Fig. 3. For Umgx = 5 ay, 6b = t = 0.02 rf

and a = 1 Fig. 3 shows rather good agreement between predictions obtained pre-

viously (Tvergaard, 1989) and those obtained here byhc finer mesh of Fig. 2 (1792
triangular elements instead of 768 elements). Such good agreement has also been

found in other cases; but not for a = 4, where the finer mesh gives significantly

earlier debonding (see Fig. 3). No tangential debonding at all is predicted for a

0
0 002 0.01. 0.06 0.08 0.10 £ u.12

Fig. 3. Stress-train curves predicted for om.x 5 ry, b12 0.02 rj, af 5 and
f 0.13.
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3

Cy 2056 elements

2 %:
.. .......... .. /. . . . . . . . .

768 elements 1792 elements

0
0 002 004 006 0.08 010 61 012

Fig. 4. Stress-strain curves for omax= 7 y, bn = bt = 0.02 rr, ( = 1, Of 5
and f=0.13.

4, but the mesh in Fig. 2 is significantly refined near the sharp fibre edge, and the

corresponding better resolution of the stress peak near the edge results in earlier

debonding. Fig. 3 also shows that taking either a = 1 and 4t = 4 bn or a = 1.5

and & = 1.5 gives debonding at a value of the overall strain c, between those
found for the first two cases considered. For a = 1 and t = 4 6n the work of

purely tangential separation is identical to that for a = 4 and & = &,, ; but the

simultaneous increase of the peak stress in the latter case has the effect of elimi-

nating fibre pull-out.

A significant effect of the mesh refinement has also been found for 0'max = 7 ay ,

6n = 6t = 0.02 rf and a = 1, as shown in Fig. 4. Initial debonding occurs on the

flat fibre end near the sharp edge, and subsequently this toroidal void grows large
as illustrated in Fig. 5, without leading to complete debonding at the fibre end. By
contrast, the cruder mesh computation (768 elements) predicts complete debonding
at the fibre end with a corresponding steeper load drop and a lower load level
during the subsequent fibre pull-out. To check this further, the computation has
been repeated with a mesh specially designed to give a fine resolution at the fibre
end (2056 elements). This special mesh has 28 elements of equal length along the
flat fibre end. Due to the further mesh refinement, the decaying part of the stress-
strain curve (during debonding) is less jumpy; but otherwise the predictions obtain-

;- i~~i . : ,. - -.



108

(b)

Fig. 5. Debonding behaviour and contours of maximum principal logarithmic strain
for amax = 7 ay, 6n = bt = 0.02 rf , a =, af = 5 and f = 0.13 ; for 1792 ele-
ments. (a) c = 0.078 . (b) t = 0.112.

ed by the two finer meshes are in good agreement. It is noted that the development

of a small void near the sharp fibre edge, corresponding to the initial stages of that
shown in Fig. 5, has also been found by Nutt and Needleman (1987).

The effect of varying the fibre aspect ratio af is investigated Fig. 6. Here, Omax =

6 oy and b. = 0.02 rf are assumed, while a larger resistance to tangential separa-
tion than normal separation at the interface is modelled by taking a = 1.5 and

1.5 b6 . For f = 0.13 the three values 2.5 , 5 and 10 of the aspect ratio of
3

01

2

0
0 0.02 0.04 0.06 0.08 010 0.12

Fig. 6. Stres--strain curves for aw"= 6 y, 6= 0.02 rf, bt= 1.5 , a= 1.5
and f 0.13.
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have been analysed that were also considered for perfectly bonded composites by

Tvergaard (1990). Since the stress level in the material increases with increasing

at, it was expected (Tvergaard, 1990) that the ductility would decrease with in-

creasing value of at. In agreement with this Fig. 6 shows that the strain at which

debonding starts for af = 10 is less than half that for af = 5, and for a = 2.5

no debonding is found at all in the range considered. Both for af = 5 and af = 10

debonding starts at the sharp fibre edge and gradually spreads all over the flat end.

At (I = 0.12 the length of the tangential debonding region on the cylindrical fibre

surfaces, measured from the sharp edge, is 0.67 rf for a = 10 and 0.13 rf for

Of =5.

The effect of varying the fibre volume fraction, for fixed fibre aspect ratio aT = 5,

is studied in Fig. 7. The parameter values used for the debonding model are identi-

cal to those considered in Fig. 6, and the fibre volume fractions analysed are 0.25,

0.13 and 0.08. For comparison, the uniaxial stress--strain curve of the matrix

material (f = 0) is included in the figure. Here, the relatively late onset of de-

bonding for f = 0.25 is in contradiction to the expected reduction of ductility

01 t=0.25
oy

2

- -

0 0.02 0.04. 0.06 0.08 0.10 El012

Fig. 7. Stress-strain curves for ..ax= 6 ay, 6= 0.02 rf, 6 t= 1.5 , a= 1.5
and a= 5

I.
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associated with the increased stress level in the material. This is due to interaction
between neighbouring fibres in the particular periodic arrangement of whiskers

analysed here (Fig. 1). For f = 0.25 the neighbouring fibres overlap, and the dis-
tance between them is quite small, so that high shear stresses in a small overlap

region of the cylindrical fibre surfaces transmit a significant part of the axial load.
In fact, for f = 0.25 the first debonding is tangential, in this highly stressed over-
lap-region, even though a higher resistance to tangential debonding has been as-

sumed by taking a = 1.5 and bt = 1.5 6, . The redistribution of stresses following
this tangential debonding leads immediately after to normal debonding at the fibre

end and the associated abrupt reduction of the average tensile stress shown in Fig.
7 (at ci = 0.095)

For a regular array of end to end fibres Needleman and Nutt (1989) do find earlier
debonding when f is increased, in agreement with the experimentally observed
reduction of ductility for increasing fibre volume fraction (e.g. see McDanels, 1985).

This regular array does not allow for shielding of fibre ends due to whisker overlap.
In a real material the whiskers are more or less randomly distributed so that some

fibre ends are shielded by overlap, while others are not, and clearly void formation
by debonding will tend to start at unshielded fibre ends. It has been found (Tver-

gaard, 1990) that the periodic fibre arrangement in Fig. 1 gives a good representa-

tion of the overall stress strain behaviour. However, from the point of view of de-

bonding the present results show the possibility of a strong effect of local interac-
tions. This emphasizes the need for more detailed studies of the effect of different
fibre distributions.
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ABSTRACT

The tendency for a bridged matrix crack to induce fiber breakage is studied
theoretically. We contemplate a composite which has a single matrix crack
bridged by all fibers, and which is subjected to tension parallel to the
reinforcement. Of interest in judging whether the fibers will fail is the degree to
which the fiber stress deviates from its mean value, and the dependence of this
deviation on interface parameters. This issue is pursued here for an idealized
two-dimensional composite with widely spaced fibers and with a fiber-matrix
interface which is governed by Coulomb friction. It is shown that a stronger
interface causes a higher stress concentration at the fiber surface thereby raising
the likelihood of premature fiber failure.

INTRODUCTION

In ceramic-matrix composites subjected to tensile stresses parallel to the
fibers, large matrix cracks are sometimes observed. In fact, a single matrix crack
can traverse the entire specimen leaving the fibers intact (Aveston, Cooper and
Kelly, 1970). Depending on the composite, the applied load can often be raised
to the point that matrix cracks parallel to the first one can appear. The
composite can then go on to sustain stresses that are typical of the fiber
strengths. On the other hand, if the first matrix crack imposes undue stresses on
the fibers, then the fibers may break, causing premature composite failure.
Hence, further matrix cracking and, consequently, the ultimate strength are
dependent on the state of stress prevailing once a single bridged matrix crack has
traversed the entire specimen. From a microstructural point of view, the
tendency for fiber breakage to interrupt multiple matrix cracking is widely
believed to be dependent upon the characteristics of the fiber-matrix interface. In
particular, the higher the degree of bonding, or the greater the resistance to
slippage, the more likely it is for the fibers to break prematurely.

The source of the variety of behaviors can be readily appreciated. Regardless
of the interface properties, the average tensile stress in the fibers at the matrix
crack plane is the remote stress divided by the fiber volume fraction. Hence,
assuming the fiber properties are held constant, the difference between a
composite that sustains multiple matrix cracking and one which suffers
premature fiber breakage can be associated with the degree to which the tensile

________________________________________________
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stress in the fiber near the matrix crack plane is non-uniform. For example, a
composite with a strong interface (in which the fibers break prematurely) will
have high stress concentrations where the matrix crack impinges upon the fibers.

A preliminary, highly idealized treatment of this problem is presented here in
which the composite is viewed as two-dimensional, the moduli of the fiber and
matrix are assumed to be equal, the influence of neighboring fibers is neglected,
and the fiber-matrix interface is characterized by a Coulomb friction interface
law. When interactions between fibers are neglected, the stresses in the vicinity
of the matrix-crack-impinged fiber can be deduced by studying the problem
shown in Figure 1. This problem is in some respects similar to one recently
treated by the authors (Dollar and Steif, 1989) in which a finite crack impinges
on Coulomb friction interfaces. There it was shown that the stress at the crack
tip is finite, and that the stress concentration is greater for interfaces that are
more resistant to slip. The model problem depicted in Figure 1 will give some
insight into the tendency for the interface to control the breakage of fibers after
matrix cracking has begun.

ANALYSIS

The two-dimensional problem considered here can be equivalently recast as a
half-plane problem, as shown schematically in Figure 2. The fiber, occupying
the region -a < x < a, is subjected to a uniform normal displacement and zero
shear stress; the tensile load transmitted by the fiber is P, which should be
viewed as equal to the tension applied to the composite divided by the fiber
volume fraction. This problem is similar to that of a half plane upon which is
pressed a flat, rigid, frictionless punch, except that the force applied to the punch
is tensile instead of compressive. The second, now crucial, difference is that the
fiber is not perfectly bonded to the matrix material; the particular interface law
employed here is the following. Relative motion at the interface is modeled
with Coulomb friction, an approach which has been used by the authors in two
recent papers (Dollar and Steif, 1988;1989). According to this interface law,
each point along the interface is either sticking, slipping, or opening.
Specifically, these three states along the interface x = a are described as follows:

stick condition c < 0, IxJ<gIX Io,a = 0, h = dh ff
dt dt (la)

slip condition a <0, Irl = I fai, sgnd&) = sgn(t), h = d = 0 (/dr d t (lb)

open condition a = 0 f, h > 0 (1c)

with
C = ax r = ay
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Frictional
interface

2a

Figure 1. Schematic of a fiber bridging a matrix crack.

Frictional
interface

2ar

Figure 2. Bridged matrix crack recast as a half-planie problem.
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g = lir [v(a - cy) - v(a -,y)]

h = lim [v(a- ,y) - v(a-e,y)]

In these equations rxx and xy denote the usual Cartesian components of

stress, u and v denote the x- and y-components of displacement, respectively, and
t is the friction coefficient. An analogous interface law would hold for x = -a.

In applying equations (1), one must be careful to use the total stresses, including
any residual stresses. In real composites, residual stresses inevitably arise at the
interface, often due to differences in thermal expansion coefficient. Here we
simulate a residual compression at the interface by first subjecting the body to
uniform compression axx = - ao. Thus, two parameters characterize each point
on the interface: the residual stress 0 o and the coefficient of friction g.. In the
problem posed below, both quantities will be assumed to be constant along the
interfaces. Symmetry of the problem shown in Figure 2 dictates that the extent

of slip is the same for both interfaces; however, it is dependent on the load in a
manner which comes out of the analysis.

Before we outline the solution method for the case of slippage at the
interface, we consider briefly the nature of the fields in the vicinity of the crack

tips. The near-tip behavior when a crack impinges upon a slipping interface was

discussed in some detail in a previous paper by the authors (Dollar and Steif,
1989); we found that the stress at the crack tip was finite. That is, there are no
admissible crack-tip eigenfunctions, satisfying the conditions of traction-free
crack faces and frictional slippage at the interface, which exhibit singular
stresses. The dominant eigenfunction is one involving piece-wise constant
stresses, the only non-zero stress component being the tensile stress Gyy ahead

of the crack tip. Our solution method is such that this near-tip behavior can be
simulated. (Actually, the additional condition imposed in Dollar and Steif
(1989) was that slippage was to occur such that the crack opened; for a closing
crack, a singular compressive stress ahead of the crack tip is possible.)

The method of solution follows closely that used in other papers focusing the
effects of frictional slippage (Dollar and Steif, 1988, 1989). Slippage at the
interface is represented by a continuous distribution of dislocations. The total

stresses are the sums of the stresses associated with the perfectly bonded solution
(the negative of the flat, rigid, frictionless punch on the half plane) and the
stresses associated with the distributed dislocations. One obtains a singular
integral equation for the dislocation density by enforcing the friction condition

(lb) along the slip zone. The length of the slip zone is unknown and is found as
part of the solution.

The terms in the governing equations are conveniently expressed in terms of

the Muskelishvili (1953) complex analytic functions 0(z) and \v(z), which are
related to the sums and displacements according to
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cr. + ayy = 2(0 + 0) (2a)

Cry - a + 2i c,= 2( - + V') (2b)

2G(u + iv)=c0- z - (2c)

where z = x + iy, ( )' denotes complex differentiation with respect to z, an
overbar denotes complex conjugation, G is the elastic shear modulus, and K = 3 -
4v in plane strain.

To use superposition as indicated above, one must have, as the kernel
solution, the solution to the problem of a dislocation in an infinite medium
which has two semi-infinite, traction-free cracks. The technique to find such a
solution is given by Lo (1978) (among others), who used distributed dislocations
to represent the kink of a kinked crack. For a dislocation in the y-direction with
Burger's vector by, one finds this kernel solution to be given by

0 0-+0i (3a)

'1/ = 1- + 'VR (3b)

where

2 (z'zo) = a- Ot= - ax i o
z-zoz-z (z~o)2(4a,b)

04i(zzo) = - [F(z,zo) + F(zio) + (zo- o)H(z, o)] + c

X(z) (5)

Vp(zZo) (ZZO) -4 (Z,2:) - Z4R (ZA) (6)

1 X(zo)
F(zzo) - X(z)

2(z-zo) (7)

H(z,zo) = aF (zzo)
a zo (8)

X(z) = (9)

a = G by
n(k+1) (10)

This solution appears quite similar to the kernel solution for a finite crack
(see Lo (1978)). One important difference here is that the branch of the square

. r 'is the one which has discontinuities along the branch cuts -00 < x < -
a and a < x < -. Here, the constant c can be evaluated by noting that the
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function c/42 is the solution to the problem of a flat, rigid, frictionless
punch applied to the lower (or upper) half-plane. It is obvious that a solution to
the punch problem (with an arbitrary load) may be superposed on the dislocation
solution. Here, since we are superposing the distributed dislocations with the
punch loading of the perfectly bonded half-plane, the kernel dislocation solution
must involve zero net force transmitted across -a < x < a. Hence, c must be
zero.

The perfectly bonded solution, 'p, is given by (Mushkelishvili, 1953)

P = P
2ir X (z) (11)

where X(z) is defined by (9). As expected, the stresses are square-root singular as
the crack tip is approached. Once we allow frictional slip to occur, however, the
interface serves to "blunt" the impinging matrix crack.

To formulate an integral equation, we now assume (as was done by Dollar
and Steif, 1989) that slip occurs along a single portion of each interface (x = ±a,
-L < y < L), with the remainder of the interface being in a stick condition.
Then, it is necessary to distribute dislocations (with Burger's vector in the y-
direction) only along the slipped portions of the interface. The distribution of
dislocations is chosen to satisfy the following integral equation which enforces
the friction condition oxy = +Itlxxi along the slip zones:

Jb(yo) [Ro(y,yo) + Ri(y,yo) + 1.R2 (yyo)] dyo + f(y) = 0

where b(y) is the dislocation density, and the functions Ro (the singular part),
RI, R2 and f are given in the Appendix. To write the equation along only 0 < y
< L, we have taken advantage of the symmetries of the problem. As in Dollar
and Steif (1989), the slip is adjusted (for a given P and ao) so that the net stress
intensity factor at the crack tips (x = ±a, y = 0) is zero, and so that the
dislocation density vanishes at the ends of the slip zones.

Of the various quantities which may be computed from the solution, the
tensile stress immediately ahead of the crack tips is the most important one
considered here. This tensile stress, (ayy)tip, can be obtained in two ways.
First, it is readily shown that this stress is related to the dislocation density as
one approaches the crack tip from the slip zone according to

(cyyy)iip = -E- b(0)-v2  (13)

Alternatively, the stress at various points ahead of the crack tip can be
computed from the entire distribution of dislocations, followed by an
extrapolation to the crack tip. The degree to which these two methods yield the
same number is a measure of the accuracy of the numerical solution. Generally,
agreement to within a few percent was found.
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RESULTS

The principal result here is the tendency for the frictional interface to
effectively "blunt" the matrix crack (see Figure 3). Therefore, the stress at the
tip, rtip, normalized by the average fiber stress P/2a, is plotted as a function of
the average fiber stress relative to the nominal friction stress 12ao. The
dependence on the fiber load, insofar as it is normalized by twao, is typical of
problems involving frictional interfaces. As the applied stress increases relative
to Iwao, the stress concentration diminishes; this is the blunting effect of the
frictional interface. For loads that are small compared with the gcro, the slip
zone becomes vanishingly small compared with the fiber diameter; in this limit
one recovers the infinitely large stress concentration of the perfectly bonded case.
The limit of small scale slipping was studied explicitly in Dollar and Steif
(1989), where it was found that the stress at the crack tip is proportional to ao,
and independent of the applied load which is small compared with ao.

4.0-

3.0

WIIP
P/2o

2.0

/.L, 0.1

0.0 -
0.0 4.0 8.0 12.0 16.0 20.0

P/2o

Figure 3. Stress concentration as a function of fiber stress.
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We consider now the results for quantities which are commonly of interest,
and which can be deduced by approximate calculation. In Figure 4, the slip
length is plotted (in solid lines) as a function of the normalized fiber stress. For
comparison, we show the same quantity calculated by a highly approximate
method in which the shear stress at the interface is taken to be exactly equal to
guo. The approximate slip length, then, is that distance over which the fiber
load P is completely transfered to the matrix. This slip length is plotted as the
dotted line. Note the relatively modest discrepancy between the numerical results
and the highly approximate calculation. Note also that the curves for different
friction coefficients g are distinct. This is characteristic of similar problems
involving Coulomb friction (see Dollar and Steif, 1988, 1989); namely, that the
results depend to a greater or lesser degree on the parameters g and 0o
individually, and not just on their product.

Consider also the crack-tip opening displacement which is shown in Figure
5. This opening corresponds to the maximum amount of slip at the interface (as
y -+ 0). As in Figure 4, the solid lines are the results of the calculations carried
out here, and the dotted line is an approximate calculation of the maximum slip
based on the assumption of a constant interfacial shear stress (equal to po1).
There is reasonable agreement between the numerical and approximate results
though the latter does not, of course, predict any dependence on g. alone.

10.0

8.0

6.0

2
4.0 .

2.0

0.00.0 2.0 4.0 6.0 8.0 10.0

P/2o

Figure 4. Slip length as a function of fiber stress.
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P/2a

Figure 5. Crack-tip opening displacement as a function of fiber stress.

CONCLUSIONS

An idealized two-dimensional fiber composite with a single bridged matrix
crack has been studied, particularly for the degree to which the tensile stress in
the fiber deviates from its mean value. For loads which are small compared
with the friction stress tao, the maximum stress is proportional to ao (as was
found previously) and, thus, highly concentrated. Even when the applied stress
is several times the friction stress, the stress at the fiber surface can be twice the
mean fiber stress. However, for reasonable material parameters, the blunting
that continues with increasing load appears to be sufficient to preclude premature
fiber failure, at least for an interface that is characterized by Coulomb friction. It
is likely that actual bonding (chemical) at the interface would raise the stress
concentration, though in that case one wonders how the first matrix crack
managed to get across at all. These questions are being pursued.
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APPENDIX

In this Appendix we give expressions for the terms in the dimensionless
version of equation (12). Stresses have been nondimensionalized by P/2a,
spatial variables by a, and the dislocation intensity b(y0) by ft~ic+I)I(2G a).

Rol'y,yo) = 2
y-yo

Ri(y,yo) =2 IM [1121 + IM fh3 .h+3 i  +u + 2y Re [H(zIzo)]

R2(Y,YO) =-Re [3 + h3 +4 h] + 2y Tm. [f(zzo)] -2 Re [H(zAz)]

where

7rD Z+ZO Z+ZD

H(zzo) 2Xz+Xz) [ 1 + X(o + [X(Z)-X 2  1 ~)Xz

H (zzo) -= azz)

The function f(y) is written as

f(y) =fl(Y) + 9t f2(Y)

fl(y) y =

f2(Y) - (.Im[..L + y Re [-.L..])

X, PC, P2

t oe,~
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Abstract
In certain ceramics, the high stress in the tip of a macroscopic crack
induces martinsitic type transformation of second phase particles (e.g.,
Zirconia, Z 02). The transformation changes the near-tip stress by
decreasing Ehe net stress intensity factor and the toughness of the
material is thereby enhanced. To evaluate the decrease of the stress
intensity factor, one needs to know the distributLon of transformation
strain around the crack tip. Therefore, an incremental analysis of
plasticity, which takes into account the microstructural properties and
mechanism of the particle transformation, is generally required.

In this paper, we present a method of calculating the decrease of stress
intensity factor without considering the microstructural details or
performing an incremental analysis. Regardless of the history of loading
and unloading, the current crack opening displacement is all the
information needed for the calculation. It is proven that under a given
distribution of crack opening displacement, there are infinite numbers of
possible configurations of transformation zones with transformation
strains inside. Identifying the actual transformation strain and
transformation zone is impossible unless additional information is
provided. However, all these transformation strains inside the
corresponding transformation zones induce the same decrease of stress
intensity factor. In this sense, they are all equivalent. If we can
obtain any of these transformation strains with the
corresponding transformation zone, the decrease of stress intensity
factor is then determined.

The problem is formulated as a system of integral equations of the first
kind with transformation strains as unknowns and crack opening
displacement as input data. The regularization method is employed to
obtain a stable solution of these ill-posed integral equations. The
stress intensity factor is then computed by using Bueckner's weight
function.

1. Introduction

The high stress in the vicinity of a macroscopic crack induces local

plastic deformation of particles, such as martensitic type transformation

of second phase particles. The transformation decreases the net crack

tip intensity factor and thereby the toughness of the material is

enhanced. This fracture toughness enhancement has been observed in a

number of ceramic materials (e.g., Claussen, 1976; Evans and Heuer,

1980).
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McMeeking and Evans (1982) and Budiansky et. al. (1983) have studied the

problem by taking into account only the dilatant part of the

transformation. As they have pointed out, due to the neglect of shear

transformation, the increases in toughness predicted are less than

experimental values. The effects of shear components of transformation

with different shapes and orientations are further accounted fnr by

Lambropoulos (1986). In Lambropoulos' analysis, a constitutive model is

proposed. The constitutive model is similar to the incremental theories

of metal plasticity in which the behavior of material is characterized by

a yield function, a loading criterion and a set of flow equations.

In this paper, measured crack opening displacement is used to evaluate

the increase of fracture toughness due to particle transformation

(dilation as well as shear). No particular constitutive law and loading

history are involved explicitly in our analysis. When crack opening

displacement is provided, no matter what loading (cyclic or monotonic)

was the material loaded, the changes of stress intensity factor can be

obtained by solving a set of integral equations.

2. Basic Eauations

For simplicity of notations, we consider only Mode I problem. A material

D with a crack is loaded at its surface aD (Fig. l(a)). Transformation

zone 0 is developed near the crack tips. It follows from the principle

of superposition (Fig. 1) that the net stress intensity factor Knet (SIF

for problem shown in Fig. l(a)) is given by

Knet - K(O) + KI

where K(0 ) is the stress intensity factor that would be induced at the
Itips by the applied loading in the absence of transformation zone (i.e.,

SIF for problem shown in Fig. l(b)) and KI is the stress intensity factor

for problem 1(c).

There is a well developed body of knowledge for computing K( . The

effort of this paper is to evaluate KI, the change of stress intensity

factor due to the existence of particle transformation (SIF for problem

shown in Fig. 1(c). The net stress intensity factor is then obtained as

the sum of K(0 ) and K1 .

I
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Let us first derive the integral equation for problem shown in Fig. 1(c).

It has been shown in our previous papers (Gao and Mura, 1989a and 1989b)

,hat the integral equation for the problem with transformation strain Cp

in a subdomain of D ( Fig. 2) Is

C j ( ) (x) dx

- Cijk , Gk.,j (x - x') uI(x) nj ds(x) (1)

8D

+ u um(x')

where I - 1 for x' eD and € - 1/2 for x' c 8D and ui(x) is displacement

field. Cijk is elastic moduli of the material. Gkm(x - x') is Green's

function for an infinite elastic medium and satisfies the equation of

equilibrium for a unit point force

Cijkl Cuz, Jj (x - x') - -6i 6(x - x').

6 m is the Kronecker data and S(x - x') is the Dirac's delta function.

If a crack is developed together with transformation strain ep (Fig.

l(c)), the entire boundary consists of aD plus upper and lower crack

faces. Therefore, the integral equation is

Cij C kmXG (x - p()d

- J Ci2 Gkml (x - x') u,(x) nj d,(x)

aD

+ ' u (X') + C iI Gkm, (x - x') u+(x) nj ds(%)

r

( X1 ) ui W nj ds(x) + Qju+(x)+um(xl)1 (2)

+ _ _ _ _ _ _ _ _ _ _ _ __m
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(c)

Inj

Da

Fig. 1 Transformation zone 0 with transformation strains 'P developed
near the crack tips in a body D. aD is the boundary of D.
Problem (a) is the superposition of problems (b) and (c).

iP
... .. .. ...... . . n j n j

aD

Fig. 2 Transformation strains are accumulated in 0, a subdomain of
body D.

....................o .-
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where r - (x x1 e[-a, a], x2 - 0) is the crack face, u m(x') and u(X')

are displacements on the upper and lower crack faces, respectively. The

parameters a and 8 in equation (2) are defined as

1 for x' e D
- .5 for x' e 8D

for x' e r

r0.5 for x' c r

a t for x' \ r.

Note that

(ni, n2) - (0, 1) on upper crack face

and

(ni, n2) - (0, -1) on lower crack face.

We further simplify equation (2) to

- Cijk Gkm, ( - x') ui(x) nj ds(x)

8D

+ P u (x') + fa k CjI (x - x') f[u+(x1) - ui(x )]dx1
°a

+ a[u(x') + u-(,')]. (3)

In the problem of transformation toughness, the size of transformation

zone is quite small compared with any characteristic length of the

material. The material is modeled as an infinite medium, which means the

integral along aD in equation (3) disappears.

For model I problem

u+(0) + u(x ) 0.

.......... .
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Therefore, when x' e r, we rewrite equation (3) as

J C l Gm, 1 (X - X') C'1 (x) dx

lai- -

- Ci2 k, GlJ (x - b I b(x 1 ) dx (4)

-a

where bi(X1) - ui(x1 ) - ul(xI) is the crack opening displacement.

Recalling the superposition shown in Fig. 1, we have

bi - b(a) - b(b) (5)

where b a) and (b) are the crack opening displacements for problems

shown in Fig. l(a), and l(b), respectively, b.a) are measured
b 

1

experimentally. b( b) can be computed either analytically or numerically

for a given load. Therefore, bi, as well as the right hand side term of

equation (4) is known after (5) is applied.

3. Fracture Touehness as a Global Property of Transformation Strains

Our goal is to compute transformation strain e_ by using given values ofij
bi(xl), and derive stress intensity factor KI by the computed cj.

However, equation (4) for unknown e? cannot be solved uniquely fromij
given crack opening displacement. In fact, given crack opening

displacement bi(xl), equation (4) has infinite numbers of solutions for

any chosen 0 , which covers the transformation zone 0.

The nonuniqueness of solutions for (4) is consistent with the fact that

particle transformation is irreversible plastic deformation, which is

loading history dependent. The computation of transformation strain
Ii

requires models accounting for microstructural details and for

constitutive equations characterizing the development of transformation

strain cp and transformation zone. Incremental analysis is generally

needed because local unloading may occur even for monotonic loads.

It is important to notice that catastropic failure of material results

from propagation of the main crack. Our ultimate goal, therefore, is to

evaluate the effects of the transformation strain on the toughness of the

., . .. - .: fi . . " ; 
' '"%
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main crack, which is a global property of the transformation strain e_

and can be related to the crack opening 
displacement.

It can be shown that all Lae solutions of equation (4) have some common

characteristic properties. One of these properties is that they induce

the same stress intensity factor at the crack tip (see Appendix for

details). This leads to a new idea to find any one of the solutions of

equation (4) and compute the stress intensity factor from the solution.

The question is, therefore, how to obtain a solution of equation (4). It

is impossible to solve equation (4) without specifying the transformation

zone 0. Since 0 is unknown, we choose another domain Q such that 0

contains 0 (Fig. 3), which guarantees the existence of solution. By

replacing 0 with 0*, we write equation (4) as

(6)

aCi2ki Gk._2 QE- x') I x2-0 bi (xI) dx,.
-a

The solutions of equations (4) and (6) are denoted by e(x)p and P

respectively. Although LPj(x) and ij(x) may be substantially different,

they induce the same stress intensity factor (Appendix). This enables us

to compute the crack intensity factor by using JC ) without knowing

the actual transformation strain epj(x).

The stress intensity factor for transformation strain P distributed in

0 is equal to that of the problem shown in Fig. 4, where -CP is replaced
by body force X i and traction force ti

X i- -C ijlCk(P in

(7)

.ti - Ct () nj in 80.

80 in the above equation is the boundary of 0

i4
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aa

Fig. 3. Domain 0* is introduced to contain the transformatipn zone 11.
The properly chosen transformation strains Pin 0 induce the
actual decrease of stress intensity factor K k.

aD

Fig. 4. The transformation strains 7kPare replaced by body forces -

C e Pin n avd traction forces t C n on8
t Aou lary of ~.- ik ~n na
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A useful device for calculating the stress intensity factor due to body

force and traction (Fig. 4) is the weight function of Bueckner (1970).

The function hi, a weight function, is defined in such a way that

K, - f * hi(x,a)ti(x)ds + f. hi(xa)Xi(x)dx (8)

an Q

where tI(x) is the traction applied through the line 8f* and Xi(x) is the

body force applied inside domain . I is the crack intensity factor

due to ti(x) and Xi(x). The agrument "a" of hi(xa) is the half of the

crack length. The weight function is defined by

hi(x'a) - 8-H - a) (9)
4K w(a) as

where ui(x,a) is the displacement field under a given load, K'w(a) is the

stress intensity factor under the load.

r1- .2for plane strain
H-

for plane stress.

E, L are Young's modulus and Poisson's ratio, respectively.

It should be pointed out that hi(xa) is a universal function for a given

geometry and composition and bears no particular load system to which the

body may be subjected.

By plugging equation (7) into equation (8), we have

KI - Jf* hi(xa) Cijkl EP(x) nj ds

(10)
- ! h(xa) CijkJ 7pj(x) dx

*a

After applying Gauss' theorem, equation (10) is rewritten as

KI - J Uk(x,a) i(x) dx (11)

a ki
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where Ukl - Cljkl hij (x,a). For a two dimensional half plane crack

problem, the expressions of Uk, were given by Hutchinson (1974) and Gao

(1989) as

UII -- r.3/ 2 [cos if_+ 3 cos 70]

16(1-v) f2-

U 21 - U 3 -
3/2  sin sin 21 (12)

21 12 L 2 2
16(1-y) /i

U2 2 - 1 r-3/ 2 [7 cos 30- 3 cos 78

16(1-v) 4

where r and 8 are shown in Fig 4.

4. Computation of eP

There are several experimental techniques for measuring crack opening

displacement at any points on the crack face except those near the crack

tip. For the points near the crack tip, we use the asymptotic expansion

of the displacement field. In a Mode I problem,

U 2 & K - (1 2Y + sin 2 cos

u 2 (+v) K ( 2- 2 -cos ,2  si n

0 r _ 6 <<l

where 6 is a chosen small parameter. For - a -< x 1  - a + 6 and a - 6 <

x 1 a, we derive bi(xl) from the above expression. Therefore, equation

(6) is written as

G lk Or, (X -Lc') 6 P (x) dx

5 a x" 2 a/ xl
- ijk C2 2kAGk, (x - x')

-a

.~- a ,-x- ,d ..

C2k 'km (X x' 1. 2 E,-1
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LCLI2 ax d.2°
C22kX Gknl (x - x') I -0 E 27r I

a-S 2

+ a-Ci2kj Gkml (x - x 2- bi(x 1 ) dxI. (13)

-a+6

K in the right hand side of (13) is the unknown stress intensity factor

we are looking for. Hence, equation (13) must be solved by trial and

error method or other iterative procedures so that KI is consistent with

the unknown ePj(x) of the left hand side in equation (13).

The solution of equation (13) is nonunique and unstable. There are

several ways to convert equation (13) into a new well-posed problem. Let

us write equation (13) in the following compact form

c(x - x') V (x) dx- U(x' K )  
(14)

x, e r"

where

- llkGx') , k, 0kl,2 !2k C22 k Ck2(x x') , C12 M Gk2,(x-x')

T
V(X) -ep , P. 2e PI

1 22' 12

U(x', KI ) - [g1 ' g21

gm -K, -a+S 2 a+x If- C22kI Gk m 't (x x') - 2-0 8(2E 21-- 1

-a
a 8.2) a- dx

+KJI fa C22k, Gkm, (x-x') Ix2 . dx1

a-6 2-0

+ j-6 Ci2k, Gkm,1 (x-x') Ix2. 0 bi (xI ) dxI .

-a+6

!I
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One way to obtain a well-posed problem is to change problem (14) into

[Mi V(x) H2
Subject to J C(x-x')V(x)dx - U' 1 2 (15)

f 

where 112 is the square of L2 norm, i.e., the inner product of a

function with itself over the domain it is defined. For example,

II Y_ 112 - J vT (x) V (x) dx.
t1

The positive parameter e measures the discrepancy of our crack opening

displacement data from the exact values. The detail discussions can be

found in Gao and Mura (1989a, 1989b).

An alternative way is to solve problem

Min Subj C(x-x) V (x) dx - U (x_', K) K 12

Subject to 11 V(x) 112 
(16)

where y is a constant used to specify the norm of the solution. When we

know the order of norm of exact solution, 7 is a given value.

The Euler equations for problems (15) and (16) are

/ * *
(x,) V (x) dx +o V (q) -U (q, KI )

x xo-( -')Y-(-x) dx- U(x', KZ P I

and

J *(x, ) V dx + a V (q) -U (q, K)

II Y ( ) 112 -_

respectively, where

;fl ' ,. • r e ., ,-
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C*( ,) - ( ',cx) C (x, x') dx' x, * C

8D

, ) - (, U (x', KI) dx'

aD

When the order of measurement error e is known, problem (17) can be

employed. In some cases, we roughly know the order of norm of the

transformation strain, i.e., 7 is known, problem (18) is suitable.

5. Numerical Examples

The method of imposing (15) or (16) to obtain a stable solution of an

ill-posed system is called regularization method, suggested first by

Tikhonov (1963). Tikhonov also showed that IIV(*)Ii 2 is a monotonically

decreasing function of a c [0+, ), where V( ) satisfies the first

equation of problem (18). Therefore, the solution of problem (18) can be

obtained by a simple iteration procedure.

An example is presented as shown in Fig. 5. The half crack length "a" is

taken as the unit length. The material is undergoing transformation

strain,

f - E2(x) - 1 x f Q (19a)

C x2  0 andxe 0 (19b)

x2 : 0 and x f 0

where f is the domain,

r : wcos2 1 , w - 0.1, - !5 ff6 . (19c)
2'3 r

In this test example, the crack opening displacement bi(XI) is obtained

by solving equation (4) for bi(X1 ) with e i(x) and 0 given in (19a)

(19c). For an engineering problem, however, bi(XI) should be obtained by

using equation (5).

In solving for transformation strain P(x), (18) is employed. The

scheme is as follows.

14i
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1. 1 and 0* are chosen from our knowledge about the order of the

transformation strain and the location of transformation zone 0; choose

K as an initial value of KI.

2. Solve the first equation in (18) numerically with the right hand

side replaced by U(x, K1 ) - U(x, K ). The parameter a is selected such

that the second equation of (18) is also satisfied. This can be done

because (IV(,)I1
2 is a monotonically decreasing function of a, where V(O)

is the solution of the first equation in (18) for the given value of a.

3. Calculate the stress intensity factor KI deduced by the computed

transformation strain c P (i.e., V). In this calculation, equation (ii)

is applied. The method of trial and error is used to select KI such that
K I  K I '

In the example shown in Fig. 5, e is chosen as 0. The comparison of

computer results with actual values of normalized stress intensity factor

is shown in Fig. 6. P is a normalized factor given by

0

where A is the area of the transformation zone 0, E is the Young's

modulus of the material. The horizontal axis of Fig. 6 is the distance

that the crack tip has advanced into the prior transformation zone,

normalized by w (see Eq. (19c)).

A similar problem is also solved (Fig. 7). 0 is the actual

transformation zone

0: r w Cos2  -. 06.

3,r3

The distribution of transformation strain is

I1 in a
P p

11 22 to outside 0,

'12-0

IVL "

• , I ,r, &
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Ncrack C

Fig. 5. A local configuration of crack tip. The equation o he
boundary 80 of transformation zone is r - - w cos - r - 0

:s x with w - 0.1. 3J3
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Fig. 6. K the decrease of stress intensity factor, versus &a, the
distance the crack tip has advanced into the prior

transformation zone. w - 0.1 is a characteristic length of the

transformation zone shown in Fig. 5. P - jw E J ' '

13

1/2
dx/A

/
,

- 
where A is the area of the transformation zone 0, E

is the Young's modulus of the material.

,4-. -' -

'4
- n
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Fig. 7 is chosen to cover the transformation zone C).

0 :5 Co 2 i with w O006

3r3
e: r 85-- o 2 ~ with wO-.09

3,r3
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Domain 0 is chosen to cover the transformation zone 0. Using the scheme

described above, a distribution of transformation strain k inside 0* is

obtained. The stress intensity factor KI is then calculated by applying

Eq. (11). With Aa/w - 0.5, the actual and computed values of KI/P are

0.39 and 0.40, respectively. P is defined as

where A* is the arei of d*.

6. Conclusion

The decrease of stress intensity factor due to particle transformation

has been analyzed by using measured crack opening displacement. We have

shown that crack opening displacement is not sufficient to determine the

details of particle transformation (the shape of transformation zone, the

distribution of transformation strain). This is easy to understand

because the process of the transformation is plastic deformation.

Nevertheless, the stress intensity factor induced by the transformation

strain is a global property of the transformation and uniquely determined

by the crack opening displacement.

According to our previous results (Gao and Mura, 1989b), crack opening

displacement can only determine the stress field outside the

transformation zone 0. Information about constitutive laws and loading

history is required to calculate the exact distribution of stress inside

0. In this paper, we have extended these results by calculating the

stress intensity factor KI, which is an important quantity associated

with the crack tip stress field inside 0. The unique determination of K

simply means that the leading term of the stress field near the crack tip

is uniquely determined by the crack opening displacement.

The advantage of this method is that no constitutive law and loading

history are explicitly involved in the calculation. The loadings can be

monotonic as well as cyclic. The stress intensity factor can be computed

as long as current crack opening displacement is provided.
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The existance of cracks can be simulated by a proper distribution of

transformation strain (Mura, 1982). Therefore, the present analysis can

be applied to calculate the decrease of stress intensity factor due to

the existance of micro-cracks near a main crack.
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Let e P(x) and 7 P(x) be defined in 0 and e and satisfy equations (4)
and (W-respect4 ely We waft to prove that the stress intensity
factors induced by cip and are the same.

Define

AC P(.) -i
( )  

d 
(

and denote the corresponding displacement and stress as Aui, A ij,
respectively. We have

C ijkl km, ( - x'} Ai (} dx - 0

which implies that Ac P(x) causes zero displacement on the crack face.

It has been pointed out (Gao and Mura, 1989a) that if both displacement
and traction are zero on a part of the boundary, then the displacement
and stress are zero in th# elastic domain which the boundary belongs to.
Here, in the domain D - n , the material is elastic and

Aui - 0

Aaij nj - 0 for xj E[-a, a] , xj - 0.

Therefore,

Au -0 in D - *

Aai" 0 in D - .

Now we prove that the stress intensity factor AK1 induced by Ae P(X) is
zero. i

As we have mentioned (see equation (9)), the weight function h is a
universal function which can be obtained from displacement field and the
corresponding nonzero stress intensity factor under any loadin. We
choose this loading as the rsidual stress field caused by 6 ct.
Therefore, if A KI (due to e 1j) is not zero, we have

hi(x, a) --- '.-- i'Aui (, a). (Al)
4AKI(a) Ba

We prove a K1 - 0 by deriving a contradiction from (Al).

Il:k?.
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Consider the solid the same as $he one shown in Fig. 3, but with)no
transformation strain in 0 orQ . The loading is a traction t~ 1 applied
throuf)a contour E outside 0 . The corresponding crack intensity factor
Ki(ti ) is obtained from equations (8) and (Al) as

JL.o ) -H t(o) a Au
- f(a )  Au~ a) d

" 4AKI(a ) 8a i a

0.

The last equality holds since Aui is identically zero in domain D - 0

Note that the concentraed load t(o) is arbitrary and thereby the stress
intensity factor KT(ti , inducediby t' cannot be identically zero.
The contradiction Is caused by equation (Al). Therefore, we conclude
that

AKI(a) - 0,

which means ei (x) and P(x) cause the same stress intensity factor.



Cracks at the Extremities of Cylindrical
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ABSTRACT

Studies on short fibre reinforced brittle composite materials in-
dicate that the fibre ends act as crack initiators. An assessment
of the behaviour of such cracks is of considerable interest to the
adequate design of short fibre reinforced composites. This pa-
per examines the boundary element modelling of the behaviour
of penny-shaped cracks that are developed at the extremities
of cylindrical elastic fibre inclusions.

INTRODUCTION

The integrity of the bond between a fibre and the surround-

ing matrix is of fundamental importance to the development

of adequate reinforcing actio, An fibre reinforced composites.

Debonding and cracking at a fibre-matrix interface can be ini-

tiated by a variety of factors including stress concentrations

at sharp edges, inhomogeneities, thermal mismatch between

the matrix and the reinforcement and other environmentally

induced loading effects (Figure 1). The evaluation of the influ-

ences of such defects on fracture propagation, stiffness degra-

dation, etc., can contribute to the accurate modelling and ef-

ficient design of fibre reinforced composites (Sih and Tamuzs,

1979; Selvadurai, 1981; Hashin and Herakovich, 1983; Kelly

?.... ~:
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and Rabotnov, 1983). This paper examines the elastostatic

crack-fibre interaction problem for a single cylindrical elastic

fibre which is embedded in an isotropic elastic matrix of in-

finite extent. The composite is weakened by penny-shaped

cracks which are located at the plane end of the cylindrical

fibre. In this instance the sharp boundaries at the plane end of

the fibre act as crack initiators (see e.g., Taya and Mura (1981)

and Mura (1982)). The composite region containing the fibre

with plane end cracks is subjected to a uniaxial stress field

(Figure 2) which induces stress concentrations at the penny-

shaped crack boundaries. The analysis of the problem focusses

on the evaluation of the stress intensity factors at the tip of the

penny-shaped crack. A boundary element technique is used to

determine the flaw opening mode and flaw shearing mode stress

intensity factors at the crack tip. The numerical scheme is used

to assess the manner in which these stress intensity factors are

influenced by the elasticity mismatch between the fibre and the

surrounding matrix and other geometrical parameters such as

the length to diameter ratio of the fibre and the radius of the

crack in relation to the radius of the fibre. The accuracy of

the numerical scheme is verified by comparison with analytical

solutions developed for classical penny-shaped crack problems

related to an isotropic elastic medium (Sneddon, 1946; Kassir

and Sih, 1975).

.Pim
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BOUNDARY ELEMENT METHODS

The formulation of the boundary element method for elasto-

static problems is given by Brebbia (1978) and Banerjee and

Butterfield (1981). In this section we shall present a brief ac-

count of the boundary element equations applicable to a bi-

material elastic region. The generalization to a bi-material re-

gion will enable the examination of the crack-fibre interaction

problem shown in Figure 2. Attention is restricted to isotropic

elastic materials which satisfy the linear elastic stress-strain

relationships

- ^ot t + kk Gf + (1)

and the Navier equations

GaV2U$1) + (\ + Ga) 4 ~2 i = 0 (2)

where G, and A, are Lame's constants; the subscript or super-

script 'a' refer to die mairix (ra) ,r fibre (f) regions; ui and

aii are respectively the displacement components and stress

tensor referred to the rectangular Cartesian coordinate system

T y, ,z; ij = 2, ,,z; ) = 2 Go.av(1- 2 v.); v, are Pois-

son's ratios; V 2 is Laplace's operator referred to the rectan-

gular Cartesian coordinate system and 6,, is Kronecker's delta

function. Here and in the sequel the Greek indices and su-

perscripts will refer to quantities pertaining to the matrix and

W2

I4ib li,
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Figure 2. Delamination and fracture at the plane ends of an

elastic fibre
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fibre regions.

The boundary integral equation for the axisymmetric problem

pertaining to the fibre-matrix composite region can be written

in the form (see e.g. Kermanidis (1975); Cruse and Wilson

(1977))

Ck4o, + ..€o,-().l = o (3)

-r. 0k ri

where ra is the boundary of the region a; uka) and P(") are

respectively the displacements and tractions on the boundaryr,,(andPu) are

ra and ik and P! are fundamental solutions. Also in (3)

cj1 is a constant (= 0, if the point is outside the body; = 61j if

the point is inside the body; = 68i/2 if the point is located at a

smooth boundary and = a function of dibcontinuity at a comer

and of Poisson's ratio (Banerjee and Butterfield, 1981)).

For axial symmetry

_.( ) 4 (1 - V,)(p2 +y2) _-p2

.(&)= C1 { )r- K (in)

2RR

_ (7 -_Bv,). (e4 - ) (4
4r R 4, _a:ml ( 4

U'€ =I c,(C2 + 72 Ef) - 1 ](
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-z CiriT r e E(Yff) + -rW K(wi)I (6)

U()- cir, [(3 -4v.) K(fff) + 2EM(7

where

7=(z-z) ; i=(r+ri) ; p2= (r 2+ r?)

e 2 .. (r 2 r?) R2f 7 ; C1(8

2rr.

and K(Mi) and E(Mi) represent, respectively the complete el-

liptic integrals of the first and second kind. The corresponding

terms for the traction fundamental solution P*' can be ob-

tained by the manipulation of the results (4) to (7).

Upon discretization of the boundaries r,, into boundary ele-

ments (Figure 3), the integral equation (3) can be represented

in the form of a boundary element matrix equation as follows:

jH(a) HS0') if M(.) M(.) j PW]9
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where H's and M's are the influence coefficient matrices de-

rived from the integration of the fundamental solutions P *(*)

and tk respectively. In the instance where there is complete

bonding between the fibre-matrix interface we have

(Im U(i) =U1 =U = u,
(10)

p f)= -pn) = pj

Using the above result, the complete matrix equation governing

the fibre composite-crack interaction problem can be expressed

in the form

(f) H )  0 u1,m

0 Hm) H(m) Uj

M M MW 0 [p()1
M MI 0 p1  (11)0 M '" ) M(M p(m)]

MODELLING OF CRACK TIP BEHAVIOUR

In the boundary element discretizations discussed in the pre-

vious section, quadratic elements will be employed to model

the boundaries of the matrix and fibre regions. That is, the

variation of the displacements and tractions within an element

can be described by

wi 
m n mmtm 'L~ l m a
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U(a) })  =0+ a( + a 2 (2  (12)
P(a)

where C is the local coordinate of the element and a, (r =

0, 1, 2) are constants of interpolation. However, in the context

of linear elastic fracture mechanics the stress field at the crack

tip should contribute to a 1/fr type singularity. In the fi-

nite element technique, the quarter point element of the type

proposed by Henshell and Shaw (1975) and Barsoum (1976)

can be used to model the required r type variation of the

displacements. That is

(ta)

SU.i

p = bo + bVr+ b2r (13)

if the same type of element is implemented in a boundary el-

ement method. Since the P(a) in (13) does not produce a

1/fV type singularity, Cruse and Wilson (1977) developed the

so-called "singular traction quarter point boundary element",

where the traction variations in (13) are multiplied by a non-

dimensional r where I is the length of the crack tip element.

The variations of tractions can be expressed in the form

A + 1 + 2V~r(14)

where b, and C (i = 0, 1, 2) are constants. The performance

k,: ,- - -. n nnn nnuuun i m
i m ~ :
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of both types of quarter point elements have been studied by

Blandford et al. (1981), Smith and Mason (1982) and Sel-

vadurai and Au (1987,1989) and their accuracy established by

comparison with known exact solutions.

In the crack-fibre interaction problem examined in this pa-

per the axial straining induces a state axial symmetry in the

fibre-matrix composite region. Consequently only the Mode

I and Mode II stress intensity factors are present at the tips

of the penny-shaped crack region (Figure 2). The flaw open-

ing mode stress intensity factor can be evaluated by applying

the displacement correlation method which utilizes the nodal

displacements at four locations A, B, E, D and the crack tip

(Figure 4) i.e.

_ Gct 2irGt + 1) {4 [u.(B)- u2(D)l + u.(E) - u.(A)}

(15)

where k,, = (3 - 4v,) and f0 is the length of the crack tip ele-

ment. Similarly the flaw shearing mode stress intensity factor

can be written in the form

V () +G)O {4 [u,(B) - u,.(D) + u,(E) - u,.(A)}
S(+(1)16) (16)
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NUMERICAL RESULTS

Owing to the symmetry of the crack-fibre interaction problem

about the plane z = 0, it is sufficient to consider a bound-

ary eleme.it discretization which is restricted to the region

z > 0. The Figure 3 shows the associated boundary element

discretization. The matrix region is modelled as a region of in-

finite extent. The accuracy of the boundary element modelling

has been verified by comparison with exact analytical solution

to the problem of a penny-shaped crack located in an isotropic

elastic medium which is subjected to a uniaxial state of stress

ao (Sneddon, 1946). In this case, the flaw opening mode stress

intensity factor is given by

Kr = 2a0Vc (17)

where c is the radius of the penny-shaped crack. The boundary

element scheme provides numerical estimates for this stress

intensity factor to within an accuracy of 5 percent.

In the numerical evaluation of the stress intensity factors at the

extremities of the end cracks a number of factors need to be

taken into consideration. These include (i) the length/diameter

ratio of the elastic fibre (h/a), (ii) the radius of the crack in

relation to the radius of the fibre (c/a), (iii) Poisson's ratios

of the matrix and fibre materials (v,n, vf) and (iv) the modu-

lar ratio of the fibre in relation to the matrix (EI/E..). For

purposes of illustration, these non-dimensional parameters are

T .. ;..
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assigned the following explicit or range of values; (h/a)e(3, 10);

(c/a)e(1.5,3.0); = v.. = 0.2; (E1 /E,) e(1, 103).

The Figures 5, 6 and 7 illustrate the variations in which the

flaw opening mode stress intensity factor at the crack tip. From

the results given in Figure 7, it becomes evident that as the

modular ratio E/Em -+ 1, c/a > 1 and when h/a > 10, the

interaction between the cracks at the extremities of the fibre

inclusion is less significant and we obtain from the numeri-

cal results, the relevant stress intensity factor for the classical

problem of a penny-shaped crack in an elastic solid of infinite

extent. As h/a becomes small (in the range 3 to 5) the inter-

action between the cracks influences the result for KI even for

the case when (EI/E,,) -+ 1 and (c/a) > 1. The results of

the numerical investigations also indicate that an increase in

the modular ratio Ej/E,, has the effects of amplifying the flaw

opening mode stress intensity factor at the crack tip. This am-

plification becomes particularly significant as (h/a) increases

and as (c/a) - 1.

The Figures 8, 9 and 10 illustrate the manner in which the

flaw shearing mode stress intensity factor Ki is influenced by

the geometric and material parameters indicated previously.

It is evident that the flaw shearing or mode II stress intensity

factor is considerably smaller than the corresponding mode I

stress intensity factor. The effects of mode II stress intensity

factor become appreciable only as (EfI/E,,,) --+ 1. For values

of (EIEm) > 102, the stiffness of the cylindrical inclusion is

. _ -w., . I nmn l unn
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sufficient to suppress the flaw shearing mode for all choices of

(h/a) and (c/a).

DISCUSSION

This paper presents a boundary element approach to the study

of elastostatic interaction between a reinforcing fibre inclu-

sion and penny-shaped cracks which are developed at its plane

ends. The analysis focusses on the idealized situation where

two penny-shaped cracks are located symmetrically at the ends

of the cylindrical fibre inclusion. The boundary element formu-

lation accounts for elasticity mismatch between the fibre and

the matrix and other parameters which relate to the geomet-

ric aspect ratio of the inclusion and that of the crack. The

boundary element scheme accounts for the stress singularity

that is present in a crack located in a homogeneous solid. It

is shown that both the flaw opening and flaw shearing mode

stress intensity factors are considerably influenced by the elas-

ticity mismatch between the fibre and the matrix and the ge-

ometry parameters. In the special case where the crack reduces

to a dclamination region at the plane ends of the cylindrical in-

clusion, the crack tip is located at the junction of a bi-material

elastic region. Any stress singularities that are computed via

the current scheme will give only approximate estimates for the

oscillatory stress singularities that can occur at a crack tip lo-

cated at the junction of a bi-material region (Atkinson, 1979).

In such situations the boundary element procedure needs to be

modified to account for the oscillatory phenomena (see e.g., Lee
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and Choi, 1988; Yuuki and Cho, 1988,1989). Similar consider-

ations apply for situations where the debonding at the plane

ends is restricted to a limited region within the cross sectional

area of the fibre.
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Abstract

A polycrystalline material is considered, in which any individual crystal
deforms by slip on a set of crystallographic slip systems. The rate of shear
on any one system is assumed to be a function of the resolved shear stress on
that system. A power law is used for illustration and this allows the overall
stress-strain-rate behaviour to be defined in terms of a characterizing stress
;F. Elementary bounds, corresponding to the Voigt and Reuss bounds of
linear elasticity, are easy to generate for f-0, and are displayed. The main
result, however, is the development of a new upper bound for ;FO, which
corresponds to the Hashin-Shtrikman upper bound in the linear case. The
derivation makes use of elementary results from convex analysis.

1. Introduction

During the course of work directed mainly towards finding self-
consistent estimates for the overall creep behaviour of cubic polycrystals,
Hutchinson (1976) also presented some elementary bounds, analogous to the
Voigt and Reuss bounds of linear elasticity. The self-consistent method
involves an approximation and so, in a sense, the elementary bounds represent
the only mathematically rigorous information that is available for the polycry-
stals considered by Hutchinson. The present work is devoted to the develop-
ment of new bounds, of Hashin-Shtrikman type, for the overall strain-rate
potential of polycrystals. The formalism allows for single-crystal behaviour
more general than that assumed by Hutchinson (1976) and the polycrystal
itself could display texture. Detailed results, however, are presented here for
precisely the type of polycrystal considered by Hutchinson. For these, single
crystal behaviour is modelled as pure power-law creep on crystallographic

ZW
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slip systems, the polycrystal is taken as isotropic (with all crystallite orienta-
tions equally likely) and the relation between rate of shear and resolved shear
stress is taken as the same for each slip system of the same crystallographic
type. Implementation of the self-consistent method is easier for uniaxial load-
ing than for general loading and Hutchinson's self-consistent results were res-
tricted to this case. In contrast, the present bound can be calculated for any
loading and a complete (upper bound) characterization of the polycrystal's
response is obtained. The elementary (Voigt-type) upper bound follows
directly from the present formalism as a limiting case and is presented, again
for any loading, for comparison. Also, for completeness, the elementary
lower bound (of Reuss type) is calculated for any loading.

2. General framework

The polycrystals to be considered fall within a general class of compo-
site materials, with n distinct constituents firmly bonded across interfaces (the
possibility n -- oo being included). Material of type r has constitutive rela-
tion

i JF,
#- dF# (2.1a)

do,,

in suffix notation or, symbolically,

c = Fr(r) . (2.1b)

In equations (2.1), e is the Eulerian strain-rate tensor and o is Cauchy stress.
The function F, is the strain-rate potential for material of type r; it is a func-
tion of the current stress o (with respect to which it is differentiated in equa-
tions (2.1)) but it may also (in general) depend on the history of stress and
deformation. In any event, F, is taken to be a convex function of a (Rice
1971, Mandel 1972).

The composite material is heterogeneous, with creep potential F(o, x),
given by

a'

F(o, x) = E F,(a) f,(x) , (2.2)

where f, is the characteristic function of the region occupied by material r
and is zero otherwise.

The overall creep potential P(-) of the composite is defined as the
mean value of F(au, x), when the composite is subjected to boundary veloci-
ties
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vi=fgxj , xedf . (2.3)

Here, the composite is taken to occupy a domain [Q and F is a constant ten-
sor. The average value of the sss a over Q is denoted by F and F is
chosen to generate a prescribed value for F. Then, as discussed by Willis
(1989), P(i) is given precisely by

f( ) = inf f. F(a, x) dx , (2A)

the infinum being taken over stress fields or which have zero divergence and
whose mean value over 0 is 4. In (2.4), units are chosen, for convenience,
so that Ql has unit volume. Of course, for a composite, CL should be chosen
to be at least as large as a 'representative volume element', for which
response to any 'macroscopically uniform' boundary condition should be the
same: thus, in particular, the alternative boundary condition

, n. = . nj , x e dil (2.5)

should lead to the same overall response, to whatever accuracy is specified,
though (2A) in fact always yields the smallest P(a).

An elementary upper bound for P(r) follows directly by substituting
the admissible stress or = 6 into the integral in (2.4):

P(a-) < f. F(F, x) dx . (2.6)

This is the analogue of the Reuss bound of linear elasticity; it is discussed
further in Section 6.

A family of lower bounds is now developed, following Willis (1983,
1986), Talbot and Willis (1985, 1987) and Ponte Castafleda and Willis
(1988), by introducing a function F0(o) and defining

V(j 7, x) = sup (or' - F(a, x) + F0(a)) (2.7)

It follows that

F(c, x) > a'? + Fo(a) - V(q, x) (2.8)

and hence that

P(-) k inf J0 [a-q + FO(o) - V(qr, x)] dx (2.9)

-*
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the mfinium being taken over stress fields a that are admissible for (2.4), for
any qi.

The infimum in (2.9) is easily calculated (at least formally) if Fo is
chosen to be quadratic:

Fo(O') = a 'Moo , (2.10)

where M0 is a fourth-order 'tensor of compliances'. The infimum is then
attained when

S= F- Aq ,(2.11)

where A is a linear operator, related to the Green's function for a linear 'com-
parison medium' with tensor of compliances M0 (Willis, 1981). Employing
(2.11) in (2.9) then gives

f(a) > Ja (OF7 - i7-i, + I AMo0 - 5.An + Fo(J) - V(q, x)) dx

or, upon using the identities

fAqdx=O and AM0  = A

P(a--) J) (F- - I r'Aq - V(r?, x)) dx + C TMo5 . (2.12)

In the case that each F, is a quadratic function of a, (2.12) is one of
the bounds, for linearly elastic behaviour, of Hashin and Shtrikman (1962);
the general case of convex functions F, was developed by Willis (1983,
1986) and Talbot and Willis (1985).

Reverting explicitly to the form (2.2) for F(a, x),

V(1, x) = i V,(7) f,(x) , (2.13)

with V, related to F, in the obvious way, and 7(x) is now chosen to have the
specia form

it

9(X) = I q, f,(x) , (2.14)

with q, constants. The bound (2.12) then takes the form

J _,,, - - .;2 .
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Z c,(,, - E c,-,.B,qo - V,(, 1,)) + d Mo,
ra

(2.15)

where

c,= Jf,(x) dx (2.16)

is the volume fraction of material r and B,, is defined so that

c,, = f,(Af,) dx (no summation on r, x) (2.17)

The bound (2.15) is optimized by choosing j7, so that

V,(l,) + E c, B,. i, = N, r = 1, 2, -, n . (2.18)
a

It may be noted that

,c CC, B, = Af, dx = 0

F
firom (2.17), since Ef,(x) =1. Therefore, equations (2.18) imply that

1: C V,;7,)= a(2.19)

exactly.

The above discussion has assumed, implicitly, that V,(t1) < - (other-
wise, the inequality (2.15) is true but trivial). It has thus been assumed,
implicitly, that each F, grows at least quadratically when a is large: this will
be the case in all of the examples considered. Now defme

o, = V (17,) (2.20)

and note that V, is the convex dual of F, - F0 :

V, = (F, - Fo)* (2.21)

It follows (see, for example, Van Tiel, 1984) that
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1 v;'(a,) = (F, - Fo)"'(o,)

Then, if F, is defined so that

F, = (F, - Fo)" + Fo (2.22)

equations (2.18) can be replaced by

a, + Z c, B,, (F.(c,) - Moo,) -a (2.23)
a

and the optimal bound corresponding to (2.15) is

k X c, (ar - c,).:(o,) + F,(o,)} . (2.24)

It may be noted that the inequality F, k F, follows directly from (2.22) and
that (2.23) also provides a bound for a composite whose rth phase has creep
potential F,(c).

If F, is replaced by F, in (2.23) and (2.24), the right side of (2.24) pro-
vides a variational approximaon to F(d) but it is only a bound if F, = F,
in a neighbourhood of a, , for each r.

So far, no assumption has been made concerning the geometrical
arrangement of the composite. When, however, the constituents are arranged
in a manner that is statistically uniform and isotropic, it can be deduced
(Willis, 1981) that

c, B,, = Q(6,, - c,) , (2.25)

for some constant tensor Q that depends only on M0 . Then, equations (2.23)
reduce to

a, + Q[IF;(a,) - Moa,] = U + Q C[,(a,) - Moj . (2.26)
a

The tensor Q can be given explicitly if M0 is chosen to correspond to
an isoropic 'comparison medium', with bulk modulus K0 and shear modulus
go. Then, using the symbolic notation of Hill (1965), so that

Mo=~: j~ (2.27)
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and the general relation (Willis, 1981)

Q=Lo-L P ,

with

[ 1 3(/¢o+ 2/o)

P /(~io +4o ' 5/o(3Ko + 4jo)]

gives

Q 12Koo 2/uo(9Ko + 8 /uo) (2.28)

= 3K 0+4#0 5(3Ko +4.Uo)

Specializing further, to incompressible behaviour, so that each F, is
independent of hydrostatic stress and KO -+ 00, (2.27) reduces to

f 1
M 0 - 0, f (2.29)

while (2.28) gives

4MO 6 o} (2.30)

In this case, equations (2.26) can be restricted, without loss, to a 'shear stress
subspace' in which hydrostatic stress is zero. Restricted to this subspace,
Mo and Q become, respectively, 1/2#o and 6Ao/5 times the identity and equa-
tions (2.26) become

a, + 3jo F(o,) a + 3#0 £ c, F.((a,) (2.31)

It should be noted that, although M0 has been taken as isotropic and the
geometry of the composite has been assumed isotropic, no assumption of iso-
Mrpy has been made for F,, and the composite may still display overall

anisotopy through possession of texture. The variable a, has been intro-
duced, purely mathematically, through (2.20), but it can be regarded as an
approimation to the mean stress in material r, (2.19) guaranteeing that the
variables a, have the correct mean value F. The 'primary' field q(x) was
taken as piecewise constant but there is no corresponding implication that the
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stress field, given by (2.11), is piecewise constant.

Before concluding this general development, it is noted that V,(r,) is
ahways well-defined if Mo = 0, and then F, = Fr identically. For incompres-
sible and isotropic M0, this corresponds to M0 -- cc which implies, for (2.31),
the limiting form

F(o,.) = " with £ c,. EF, (2.32)

for some constant tensor F Equations (2.32) generate the 'Taylor approxima-
tion', in which a uniform strain-rate F is imposed upon the entire composite
(Taylor, 1938). It generates a bound analogous to the Voigt bound of linear
elasticity.

3. The polycrystal

The polycrystalline aggregate is assumed to be composed of crystallites,
each described by the same strain-rate potential F(a), relative to crystallo-
graphic axes. The constituent r is characterized by the rotation R, that takes
its crystallographic axes to their correct orientation, from some reference
orientation. Thus,

F,(a) = F, (Rr' o,) . (3.1)

where R7' a represents the operation of the rotation inverse to R, on a. In
standard tensor notation, this would become RT o R,., the superscript T
denoting transpose but the given form is preferred, in preparation for employ-
ing a matrix notation in which o is represented as a vector in a space of 6
dimensions (or 5 when restricted to the 'shear stress space').

The texture of the polycrystal is defined, within this framework, by the
distribution of orientations R,. It has no texture, and so is isotropic, if
n -+ -c and all rotations are equally likely (though overall isotropic behaviour
could conceivably be achieved with n finite). The behaviour of each crystal-
lite is defined by the function F(o); this is discussed next.

It is supposed that any crystallite deforms by slip on a discrete number
of slip systems, with system k characterized by a slip plane with normal n(k)

and a direction of slip m(k) in the slip plane; m(k) and n(k) are taken as unit
vectors. The system is specified by the second-order tensor

A(k) = 0 ( 4(k)n(k) + mjik)M,)) (3.2)

In terms of j(k) the resolved shear stress on the kth system is
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( k* ) a ' U k ) (3 .3 )

If 7 (k) denotes the shear strain-rate (engineering definition) associated with
the kth system, then

e = I .)/# (3.4)

k

It is supposed that y( k) depends on stress only through (k), so that

7 (k) = F'k)J('r(k)) (3.5)

for some convex function F~k); in practice, F, A) will usually be taken to be

Fp')(k) -+ ) - (3.6)n I 'r fk)
corresponding to the power-law behaviour

7 ()= a (3.7)

It follows now that

F,(o) =F )(r k)) (3.8)

or, in the case of power-law behaviour,

F.-1 k (3.9)

As noted by Hutchinson (1976), the form (3.9) has several attractive features,
stemming from its homogeneity. In particular, if the single-crystal constitu-
tive law is written in the form

e = F,(a) = M, a (3.10)

(in which the fourth-order tensor M, depends on a), then for (3.9),
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= £(c rk) i(k)IT.rk) IA jpk ,k) (.1

and also

(M-)# a 2__ (3.12)

This concludes the general discussion of the polycrystal, except for not-
ing that if, in line with (3.10), material with the modified creep potential , is
considered to have constitutive relation

F,(a) -- M" a ,(3.13)

then equations (2.31) can be expressed in the form

I + o= 4F , SCCr, = , (3.14)

W being fixed by the second of equations (3.14). The equations remain non-
linear because Mr depends on o,. The limiting case -- ao, corresponding
to (2.32), becomes simply

M,o,,= , YC =  , (3.15)

where F (a) = M, o .

If matrix notation is employed, then from (3.1),

M, =,R, M,(R;-'a,) R71  , (3.16)

which shows explicitly how M, may be calculated from M,. When F0 is iso-
tropic, a corresponding relation exists between M,. and Me, defined from the
modified single-crystal potential

F, = (F, - Fo)*" + Fo  (3.17)

4. A relaxtion of the problem

A practical difficulty with the formulation presented so far is that find-
ing the potential F., defined by (3.17), requires a substantial computation.

"4.-



185

This is circumvented by introducing the auxiliary quadratic potential

Po) - t fe(k)(r(&)) , (4.1)

where

p(k a L'k r 'k (4.2)

corresponding to (3.8), (3.9) with n 1. Then, F",() is defined so that

F,(a) = F,(R o) (4.3)

Now

F0(O) = E [F,(k)(,r(k)) - p(k)(?(k))] + Fc(e)

+

k (F$k) _ j (k))**(f(k)) + F,(o) (4.4)

because F" < F for any function F. Hence, if FcJo) is defined as

F.(o) = ; (Fk) - #P(k))"(?(k)) + ?e(t) , (45)k 
(45

potentials F,(o) are given by

F,(o) =,iFC(R7" a) (4.6)

and, for any given isotropic F0 , the constant a in the definition (4.2) of Pc is
chosen so that the quadratic function Fbc - Fo is convex, it follows that

F,(o) & a,(c) (4.7)

and

(F, - Fo)" = - Fo (4.8)
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The inequality (4.7) ensures that P(d) is bounded below by the overall poten-
tial of a composite whose rth phase has potential F,(ar) and this, in turn, is
bounded below by (2.24), with a, defined by (2.23), except that in both of
these F,. is replaced by F,. The introduction of F, renders the ine.nality less
sharp but it has the advantage that the functions (F (k) - P(k))** aepend only
on a single variable and can be calculated explicitly. In f&., when F(k)(r)
has the power-law form (3.6),

PF. -,(k))**(T) -F(k)(-ri) - P?(k)(T) , Ii*I T

k(4.9)

where

rl = -rk)(a/a)/(n' ) (4.10)

5. Untextured polycrystais

The overall potential P(of) of an untextured polycrystal is isotropic and
hence is a symmetric function of the three principal average stresses,
aFi , F2 , d3 say. Equivalently, it is a function of the invariants

5. -L'(161 + 12 + I )N .
3

= [(a, - &.) 2 + "02 - (,)2 + (o r - .)2])t2
2

f L7- (51 - d.)(d2 d .)(63 - d)" 51

The first invariant, j,, is the mean normal stress. The second, d,, is the
equivalent stress, equal to 3 when , a2 = 0 and the third, f, indicates
the state of stress: Ij ! 5o, with equality when the stress is uniaxial, and

= 0 for pure shear when, for example, j, = -4f3 emG Ef2 = 0.

The polycrystals under consideration are incompressible and so
independent of d,; there is no loss of generality, therefore, in considering
only states of stress for which a2 = 0. The stresses d, and a- may then be
represented in the form

6F=. os + sin j

= 

IFI

t1
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I3=8. s -8 m- (5.2)

in terms of which

?= a {cosO (3 - 4cos 2 0)" (5.3)

Thus, I/Fr ranges from to 0 as P ranges from 0 to x/6.
In the particular case of pure power-law (and incompressible)

behaviour, F(-) becomes a homogeneous function of 6, and f only and can
be expressed, fully generally, in the form

iF0'
I- = , (5.4)

n +1 L0

in which the 'normalizing stress' fo is a function of (rf/A) only. For any
chosen value of (?F/aF.) or, equivalently, any chosen .8, the lower bound (2.24)
for 0(d) can be translated into an upper bound for l-o.

6. Cubik Polycrystals

The remainder of this section is devoted to the study of f.c.c. polycry-
stals, for which each crystallite has four slip planes of the (1, 1, 1) type and
three slip directions per plane, of the (1, 1, 0) type, giving 12 slip systems in
all. Power-law behaviour, as given in (3.9), will be assumed and the normal-
izing stress r-) will be taken as the same for each system, so that rS) = o
say.

6.1 Elementary bounds

The simplest bound for P(,) is the upper bound given by (2.6). All
twelve slip systems contribute equally to the bound, so that

12cr I "1 "+

( < 12a o( IT ) , (6.1)

the angled bracket here representing an average over all orientations of the
sdip ystem k = 1. The 'reference' orientation can be chosen so that, a .is
orientaion,

m( )  (1, O, O) and n( ) (0,0, 1)

. .............. . . .....
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Then, at a general orientation characterized by the Euler angles (p, 0, 04),

m()=(cos qi cos V - sin (p cos 0 sin #, - sin cp cos V - cos (p cos 0 sin ,

sin 0 sin V)

and

0 ) = (sin ip sin 0, cos p sin 0, cos 0)

The resolved average shear stress TO) is ff mf') n1) + f 3 m1) n4'1) , i.e.

t(') = i (cos ip cos V - sin p cos 0 sin y) sin p sin 0 + o3 sin 0 sin V cos 0

and (6.1) requires the calculation of

= o Jo dq) Jo dW .o sin e dO ji')['+, (6.2)

with 61 , d3 given by (5.2). The bound (6.1) can then be translated into a
lower bound for the normalizing stress to:

; o/,o 2- (12J.) - '/m (6.3)

where J. is evaluated with 6. set equal to 1.

An elementary lower bound for F(d), which induces an upper bound
for to, is obtained by solving equations (3.15) and substituting the solution
into (2.24), with Mo = 0 so that F, = F,. As the form of (3.15) shows, this
bound is analogous to the Voigt bound of linear elasticity; in the context of
plasticity it is often called the Taylor bound and this terminology will be used
here. Although equations (3.15) have a solution, it is worth noting that the
tensor M,(a) can become singular for some stresses c. This is because any
three tensors ti associated with the same normal n are linearly dependent,
so there exist at most 8 linearly independent g(k). If, now, s is an eigenvec-
tor of Me(c,) with zero eigenvalue,

12
M,(a)s = 0 implies aTn E= 1 (.j.(k).s) la ck) = 0,

which can be satisfied if

either g(k)' -c 0 or -)'s Ofor each k.
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This is possible since (disregarding hydrostatic stress) a and s each have 5
independent components and there are only 8 linearly independent y(k). The
same argument applies to M, which is obtained from M, by a rotation. It
was still possible, nevertheless, to obtain a solution of equations (3.15) by
Newton iteration, which is described more generally below.

6.2 The new bound

Improved lower bounds for P(j), which induce corresponding upper
bounds for 'o, follow by solving equations (3.14), but with F, replaced by F,
as given by (4.5), (4.6), and with the pair of constants a , po restricted so
that P€ - F0 is convex. For the cubic polycrystal, this implies

4 0 a > 3 . (6.4)

In practice, the best bound is obtained by taking equality in (6.4), and a and
juo were expressed in terms of the parameter rl, through equation (4.10), with
each rAt) equal to ro. Equations (3.14) were solved by the Newton iteration
scheme

a , + ,Aa,: I + 0" F ," (or,) a, - F,' (q,)

+ c# +, + =L+(CrF}

d EC, + F, F,

(6.5)

In the Taylor limit, po -o co, F, -, F, and the homogeneity of F, reduces
(6.5) to

or + A, = n " + I M I[ 4 C, M.'] 6. (6.6)

63 Resldts

Figure 1 shows plots of three boumds for the ratio f0/ 0 , against l1/n.
for a loading pattern corresponding to uniaxial tension, so that fO = 0 in (5.2)

.. ...... u ... ..... A*a, ,a w r lnt, Ita u
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0

0

0.0 0.2 0.4 0.6 0.8 1.0

Fig. I Plots (in ascending order) of the elementary lower bound, the new bound
and the Taylor bound, for ;FO/1rO , against l1n for an untextured polycry-
stal subjected to uniaxial overall stress.

CV)

LO

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 2 Plots of the new bound for FO/rO against the stress state parameterFl.
for n =1,2, 4, 8. Ile lowest curve corresponds to n Iand they
increase with n.

L
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(though other values of 8 also yield f/d, = 0). The lowest curve corresponds
to the lower bound (6.3) and the highest is the Taylor bound. The intermedi-
ate curve is a new upper bound, obtained as described above but with the
parameter 'rl chosen optimally. The bound is relatively insensitive to the pre-
cise value of T1 , which varied between about 0.125 (for n = 2) and 0.14 (for
n = 8). The curves shown were actually calculated for a polycrystal with 125
different crystal orientations; the precise value of -r would depend on these
also. In the linear case (n = 1), the bound reduces to the Hashin-Shtrikman
value 43/28. It always lies slightly above the self-consistent estimate of
Hutchinson (1976) and tends to the Taylor bound at large n.

An advantage of the present calculation over that of Hutchinson (1976)
is that equations (3.14) can be solved for any pattern of loading, correspond-
ing to any value of , a between 0 and 1. Figure 2 shows plots of the new
bound, for -0/ 0, against the parameter I ?/H, for the four values
n = 1, 2, 4, 8. They were obtained by varying fi between 0 and ;r6. The
lowest curve is for n = 1 and shows no sensitivity to stress state, as expected.
Higher curves correspond to increasing values of n and show some sensitivity,
though still not much. It is emphasised that the curves provide only bounds
but they nevertheless suggest that overall behaviour is reasonably well
approximated by the form (5.4), with ;0 taken independent of stress. Figures
corresponding to Fig. 1 have been generated for values of 8 other than zero
but, as Fig. 2 suggests, they look very much like Fig. 1.

The present formalism is also capable of generating bounds for the
behaviour of polycrystals displaying texture. The simplest possibility is to
solve equations (3.14), with volume fractions c, giving different weight to
different orientations; a further possibility is to relax the assumption of
'geometrical isotropy' and to generate different tensors B,, from their basic
definition (2.17). These options are being pursued at present.
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ABSTRACT

Some analytical results for the mechanical behavior

of elastic composite materials and structures with

growing damage are summarized and then extended to

viscoelastic media. The effect of strain rate only at

crack tips is considered first; it is shown that if the

crack speed is a strong function of energy release rate,

the overall mechanical response is like that for an

aging elastic material. Both stable crack growth and

unstable crack growth followed by arrest produce this

aging-like behavior. Viscoelastic behavior throughout

one or more of the phases is then introduced. A

simplification is used in which only one relaxation

modulus characterizes the viscoelasticity, apart from

that at crack tips. Upon replacing the physical

displacements in the response for an elastic material by

quantities called pseudo displacements, a simple model

for viscoelastic composites with growing damage is

obtained.
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1. Introduction

The problem of developing a realistic mathematical

model of the mechanical behavior of viscoelastic

composites with growing damage is a difficult one.

However, it is believed that considerable simplification

may be introduced in the description of both the

intrinsic viscoelastic behavior and the damage, while

retaining the essential elements needed for a realistic

description of deformation and fracture behavior of many

composites of engineering interest. The ephasis of

this paper is on simplifications which appear to be

applicable at least to particle and fiber reinforced

polymers when the matrix is soft relative to the

particles or fibers. The underlying model for elastic

behavior with damage is not restricted in this way.

We shall not give a general review of the
literature in this area; but, instead, contributions of

the author and coworkers on the issue of simplification

are emphasized. For a broader view of the subject, the

reader is referred to work by Onat and Leckie (1988) and

Weitsman (1988), where a tensorial description of damage

is addressed. The state variables used in the present

paper to characterize global deformation and the damage

may be scalars or tensors, but there is no need here to

identify them as such. Work on a nonlinear viscoelastic

composite-like material, polycrystalline ice, is

relevent to the present work. For some studies which

address both viscoelasticity and damage growth see

Harper (1986, 1989), Karr and Choi (1989), Schapery

(1989) and Sjolind (1987).

The present discussion is based in-part on results
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from Schapery (1990), as summarized in Section 2 where

elastic behavior with damage growth is covered. In

Sections 3 and 4 we fill in some of the details

concerning effects of growing cracks which were only

touched upon by Schapery (1990). In addition, some new

results are obtained for the case of a body with

distributed cracks which become unstable, grow

dynamically, and then are arrested. Rate effects at

crack tips only are considered in Sections 3 and 4,

while simultaneous effects of global and crack-tip

viscoelasticity are discussed in Section 5.

2. Elastic Behavior with Damage Growth

Some of the results from Schapery(!990) are

collected in this section. We consider an elastic

structure or material whose thermodynamic state is a

function of independent generalized displacements qj(j =

1,2,...J) anc internal state varidales Sm( r 1,2,...M)

as well as temperature or entropy; inelastic behavior

arises from changes in the Sm .  Generalized forces Qj

are defined in the usual way in that

6W' = Qj6q. (j not summed) (1)

for each virtual displacement 6qj, where 6W' is the

virtual work. Then, from thermodynamics

Qj= aW/aqj (2)

where W is the Helmholtz free energy (when temperature

is used as an independent state variable) or the

internal energy (when entropy, instead of temperature,

is an independent variable). For brevity, thermal

effects will not be considered here, and therefore we

shall refer to W simply as the sLrain energy. The
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generalized displacements qj may be, for example, the

uniform strains in a material element and Qj the

conjugate stresses, or qj and Qj may be, respectively,

the displacements and forces applied to a structure.

The internal state variables serve here to define

changes in the structure such as micro- or macro-

cracking, and are called structural parameters.

Whenever any one tm O, we specify as the evolution law,

fm= AWs/aSm (3)

where Ws = Ws(Sm) is a state function of one or more Sm;

also, fm is the thermodynamic force,

fm= -DW/aS m  (4)

The left side of equation (3) is the available force for

producing changes in Sm, while the right side is the

required force. For any specific set of processes (i.e.

histories qj(t)), equation (3) may not be satisfied for

all M of the parameters; if it is not, those Sm will be

constant. The subscript r or p will henceforth be used

in pldce of m to designate the parameters that change,

which are taken to be R in number.

The total work done on the body by Qj during an

actual process (i.e., a process for which parameters

change in accordance with equation (3)), starting at

some reference state, is denoted by WT,

WT $ Qjdqj (5)

where the summation convention for repeated indices is

used. From equations (2)-(5) we find

WT= W + Ws (6)

where W W, = 0 in the reference state. Thus, Ws may

ls

!4
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be interpreted as that portion of the total work WT

which contributes to changes in the structure.

The second law of thermodynamics provides an

inequality as a constraint on the changes in state,

k= T S' 0 (7)

where T is absolute temperature and S' is the entropy

production rate. Even if equation (3) is satisfied for

any one Sri this inequality may not allow it to

change. Moreover, instantaneous values of the Sr are

such that they minimize the total work when the body

passes through stable states; i.e.,

aWT/as r= 0 (8)

(a2WT/aSraSp)6Sr6S p  0 (9)

It is observed that equation (3) represents R

equations for finding the Sr as functions of qj. Then,

WT = WT(qjSr(qj),Sq) where the Sq are the constant

parameters. From equation (5),

Qj= AWT/aqj (10)

showing that the body exhibits hyperelastic behavior

during the time any particular set of parameters Sr

undergoes change. Because the total work is a potential

during inelastic processes, the incremental stiffness

matrix is symmetric. Conversely, given that the

stiffness matrix is symmetric when one or more Sr

che'nge, then both equations (3) and (10) follow.

If forces act on crack faces then they have to be

included in the set Qj unless they are associated with

frictionless contact; in the latter case, the effect of

crack opening and closing may be taken into account
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through the form of the strain energy function. Coulomb

friction, if significant, cannot be accounted for

through a work potential, and therefore the stiffness

matrix is not necessarily symmetric during processes

involving crack face sliding. If, however, one can use

a potential to characterize the relationship between

crack-face forces and relative displacements between

crack faces, equation (10) may be extended to this case

by including this potential (which may depend on

additional structural parameters) in WT; such a

simplification is applicable with surface free-energy

effects (Schapery, 1990) and was proposed by Schapery

(1989) to account for crack-face friction in ice under

compression.

3. Rate Effects at the Crack Tip

Here we provide the background to Section 4; in

that section it is shown that a familiar equation for

crack speed, discussed next, leads to equation (3) as an

approximation.

Suppose that the local crack tip speed * (at an

arbitrary point on the crack edge) obeys a power law in

local energy release rate G,

a = k Gq  (11)

where, for now, we assume q is a positive constant;

also, G - -aW/aA where W is the strain energy of a body

with one or more cracks less the surface free energy,

and aA is an increment in crack surface area. The

surface free energy is usually negligible (which we

assume here) so that W = W. The coefficient k may

change with time for various reasons, including
4

(4

I mmmmmmmmmmmmmmm ~ m
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transient temperatures, material aging, and mode-ratio

effects; if the latter exist, we assume the mode ratio

is constant. It will be helpful to write k = Cl

where cI is a positive dimensionless function of time

and k, is a positive constant which has dimensions

appropriate for the units used in equation (11). Now,

integrate equation (11) with respect to time and then

take its qth root,

Aa /q = LG k 1/q (12)

where Aa a-a0 , ao is the crack size at t=O, and

LG G [f Gqd']l/q  (13)
0

is the so-called Lebesgue norm of G; also,
t

f cl(t')dt' (14)
0

is reduced time.

If q = -, then LG = G9, where G is the largest

value of G up to and including the current time (Reddy

and Rasmussen, 1982). For many materials O<<q <-, which

leads to an approximation for LG which is practically as

simple as for q = -. Consider first the case of power-

law reduced-time dependence G - P where p 0. Then,

L k 2I/qG (15)

in which k2  (pq + 1)-1/q (16)

The accuracy of equation (15) was studied by Schapery

(1982) (using pseudo strain rather than energy release

rate as the argument of the Lebesgue norm) for cases in

which the argument was a nondecreasing function of &,

not necessarily a power law. In terms of G used here,

let us define p as a logarithmic derivative,
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d log G (17)

where p > 0. With q >_ 4, good agreement was reported

between equation (15) and the value of LG found by
numerical integration for a variety of histories with

p = p( ). If q is large or p is not strongly time

dependent, then k2 may be taken as a constant, which we

shall do here; however, even if p is negative or k2 is

not coiustant, approximations like that in equation (15)

can be developed, and they are useful in view of

numerical integration difficulties encounted when q>>1

(Schapery, 1982).

Use of equation (15) in (12) yields

G = (Aa/ )l/q/k 2k11/q (18a)

which replaces equation (11) as the means for predicting

crack growth. The left side is the available work/area

for crack growth; therefore the right side may be

interpreted as the required work. Equation (18a) is

like the crack growth equation for a brittle elastic

material, where the right side is the critical fracture

energy, say Gc. However, in contrast to brittle elastic

behavior, Gc here varies with crack g-owth and time.

That the Lebesgue norm depends primarily on the

current value of G when q>>l, rather than its entire

history of variation, is obviously due to the integrand

(Gq ) being a strongly increasing function of G and the

assumption dG/d& >_ 0. Thus, even when the power law

equation (11) is not applicable we expect to be able to

use a crack growth law of the type

G = Gc(Aa/c) (18b)
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to predict instantaneous values of Aa. One may arrive

at equation (18b) directly by starting with

a = kf(G) (19a)

where k is such that f(1) = 1. The form of equation

(11) results by using the exponent

q - log f/log G (19b)

(Alternatively, one could define q as a logarithmic

gerivative instead of a ratio.) Then, if q>>1 and

G - 0 it is anticipated that equation (18a) will be a

good approximation, although its accuracy has not yet

been studied. As q is now a function of G, one needs to

solve for G; this yields equation (18b), in which Gc is

not necessarily a power law in Aa/ .

Another generalization of interest is for cyclic

loading when the basic growth law is like equation (11)

or (19), but a and G are replaced by da/dN and the

maximum value of G over a cycle, respectively.

Obviously, the above results may be used in this case,

but a reduced time based on N, rather than t, enters.

With a small modification one may also treat in the same

way the case where the amplitude of variation of G over

a cycle is used in place of the maximum G (Schapery,

1990).

It should be observed that when G < G and q>>1

then LG , equation (13), is practically constant if the

time period for which G < G is not extremely long.

This implies 0 constant and from (15) that

kI/q- G(20)

where is the reduced time at which G first drops
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below the largest value G . This behavior is taken into

account in the elastic-like model if we assume a = 0

when G < Gc, where Gc = G (Aa/ ). If G later increases

to G,, say at time then Gc again varies as in

equation (18); but should be replaced by -(L- )

for continuity of Gc. In some cases, such as for cyclic

loading, it may be necessary to account for

contributions to LG when G is close to G by modifying

equation (15) (Schapery, 1982).

In arriving at equation (18) it was not necessary

to specify explicitly the manner in which G varys with

loading or with geometry of the one or more cracks that

may exist. However, this variation certainly will

affect the time-dependence of crack growth and thus

determine the accuracy of equation (18) and whether or

not a physically acceptable solution Aa exists. In

order to illustrate this point, let us consider two

special cases before discussing the connection between

equations (3) and (18).

First, observe that if the energy release rate is

constant in time, equation (18) is an exact result.

This situation exists for some elementary delamination

and transverse microcracking problems in laminates when

the applied displacement is constant. A second more

interesting case is that for which

G = aG1  (21)

where G, is a function of only the applied loads or

displacements; this form may be derived by dimensional

analysis for a linear or nonlinear homogeneous body with

an isolated, penny-shaped crack of radius a or straight-

edged, through-the-thickness crack of length a.

m • ,. ., , i , .
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Equation (18a) then can be written as

(a - ao) 1//a = k2(kl&)i/qG (22)
00

If G 0 this equation predicts that a is a positive
function of for O<4<f, where

fao (q-1) 1/kI(k2qaoG1 )q (23)

Also, a at 4 = f and there is no solution for

> tf. The crack size at time f is

a = aoq/(q-1) (24)

(Note that a ao if q>>l.) Equation (23) is the
limiting time for which a physically meaningful, stable
solution is obtained. Therefore Cf may be interpreted
as the fracture time, unless the crack growth is
arrested by interaction with, for example, originally
remote particles or fibers.

When equation (21) is used in the original growth
law (11), with q>1, we obtain as the exact solution

a/ao= (1-11)1/(l-q) (25)

where

1I1 (q-1)klao(q-l) fGqdC' (26)
0

Observe that crack size is a monotone increasing

function of time and a = a = - at the time for which I,
= 1. Denoting this fracture time by 4F' we find

4F= {(q-1)k 1a0(q-l)G1q}
-I  (27)

if G, is constant. Both f and &F depend on ao and G,
in the same way, and they are equal if we take k2 =
(q-1)/q; if q>>1, then k2. 1, as in equation (16).
Thus, for this case in which an instability develops,
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approximate equation (18a) provides essentially the same

crack growth behavior as the exact solution.

4. Work Functions with Rate Effects.

Let us now combine the results in Sections 2 and

3. We assume the instantaneous geometry of all cracks

in the body may be defined by the structural parameters

Sm .  For many particulate and fibrous composites, the

cracks tend to be at or close to interfaces or, at
least, to have orientations and shapes defined more by

the microstructural geometry than by the loading. The

orientation of a crack relative to that of the loading
will of course affect its rate of growth. Elliptical

delaminations, transverse cracks (which are rectangular

cracks with planes parallel to fibers and normal to ply

surfaces) and cracks between hard particles and a soft

matrix are of this type. For these cases it is

realistic to use a finite and possibly small number of

parameters to define the damage state.

Stable Crack Growth: Use the right side of

equation (18a) to define a crack work function for the

nth crack,

Wn f Aal/qdA/k2 (k1t)I/q  (28)
n

where the integral is taken over the area of growth of

the nth crack, A - A0 , which may not be planar or

otherwise regular; the various constants such as q may

be different for different cracks. The growth aa is a

local value which is defined along a curve that is

normal to the moving crack edge. If q = this equation

is independent of the history of the crack geometry, and

yields simply Wn -A-A. Since 1 << q <, the effect

I
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of history is weak, and it is therefore appropriate to

use an idealization in which Aa is a single-valued

function of A. For example, for cracks which can be

idealized as planar, through-the-thickness cracks with

straight edges, use a = A/B and ao = Ao/B where B is

thickness; thus

Wn= (A-A) /k(klB)I (29)

where

x E (1+q)/q (30)

On the other hand if the cracks are more or less

elliptical with moderate aspect ratios or circular use

A = 7va2 in equation (28) and find

Wn= 2,q(a-a 0)1/qa(a-a0 )/q

+ (a2 _ a2 )/x(1+2q)k2(kl&)l/q- (31)

in which the substitution of

a = (A/) I 2  (32)

into this result gives Wn= Wn (A, ). The area of each

crack is a function of one or more of the parameters Sm,

by previous assumption; if, for example, the cracks are

elliptical, we may use for each crack two parameters,

the major and minor axes. The total crack work

function, considering all cracks, is denoted by Ws,

Ws= r Wn (33)
n

so that Ws=Ws(Sm , 4), as in equation (3), but now with

time-dependence. If q is the same for all cracks, Then
Ws C-l/q.

A crack work function based on the more general

equation (18b) may be easily derived. For additional

'_7 77 .
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generality, also use A = Alao, where A1  and are

pusitive constants which may vary from crack-to-crack.

In this case we find for the nth crack,

Wn= Aictf (P' + 0 -ic(p')dp' (34)0

where p = Aa/ and aa = (A/A1)I/ - a0. Then equation

(33) yields W s(Sm , ).

We may now use equation (18) to arrive at (3). Let

6A be the local increment in area for a process in which

one or more crack edges advance an infinitesimal

amount. Multiply equation (18b) by 6A and sum along

the crack edges, which yields -6W = 6W . We want
this work equality to be valid for all changes

6A = (aA/aS m)6S m  due to arbitrary changes 6Sm .  This

requirement yields equation (3), where f and Ws are

given, respectively, by equations (4) and (33).

Inasmuch as Ws= Ws(Sm,¢ ),  the behavior is the same as

for an aging elastic material. However, it should be

recalled that the aging stops during periods of "load

reduction" (cf. equation (20)).

For the special case in which there are only two

different q's, say one q<- and one q=-, equations (28)

and (33) provide the simple power-law time-dependence,

Ws= W.+ Wq4 -1/q  (35)

where WO= W (Sm) and Wq=Wq(Sm). Then, the R parameters

Sr which change in a process are found from the R

equations,

awr ao W A I -1/q (36)

r r r
Even if the qj are constant in time, equation (36)

yields time-dependent values of Sr, and thus time-
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dependent stresses or forces through equation (2) or

(10).

The connection between equation (3) and crack
growth theory was established by considering the

propagation of individual cracks. However, in modeling

damage growth associated with microcracking, it is

normally practical to use only a small number of

averaging structural parameters which serve to

approximate the actual effect of damage on overall

mechanical behavior. As done previously (Schapery,
1990) let us require the approximate model to exhibit

the same overall limited path-independence of work as

impliod by equation (10). Inasmuch as equation (3) is

necessary and sufficient for such limited path-
independence, this growth law should be used in the

approximate model. Carrying this argument one step

further, we would want the time-dependence of Ws to be

essentially the same as that for the more complete
representation, e.g. equation (35).

Unstable Crack Growth: The special energy release
rate in equation (21) leads to unstable crack growth,

which is predicted to occur at a time &f, equation (23),

that depends on the initial size. We shall consider a

situation in which there are many parallel, planar,

penny-shaped cracks with a distribution of radii

ao . It is assumed that when each crack becomes

unstable, it rapidly grows in the original plane to a

much larger size and then is arrested by some

obstacle. By considering the effect of each crack on

overall mechanical response after it reaches its final

arrested size, we can develop a work potential WT which

1m ,i
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obeys the equations of Section 2. The procedure is

analogous to that used by Schapery (1990, Appendix B)

for brittle elastic behavior. In this earlier work,

generalized forces were used instead of displacements as

independent variables. While either set could be used,

for consistency with work in the previous sections, we

shall use displacements.

The work potential is found to be

WT= W0 - gG1+ Ws  (37)

where Wo = Wo(qj) is the strain energy without cracks

and G1 = G1 (qj) is the function in equation (21). Also,

g=g(S) and Ws= Ws (S, ), where

W= (q-1)Q S 1s,)-_Q d S-(8
Wsz k2 q(kl ) I /q S (S dS

I2

in which Q (q-1)/q and S1 is the initial radius of the

largest pre-existing crack. The function g is

unspecified here, but depends on the details of

microstructure and accounts for the effect of randomly

or regularly distributed arrested crack sizes.

The stationary work condition, equation (8), is to

be satisfied by the proposed WT. From equations (37)

and (38),
1+ G+ I+ 1 - Q -1  (39)

-is-1 k 2 q(kl )I1/q dS

The quantity in braces vanishes in view of equation (23)

if we consider S to be the initial radius of the crack

which becomes unstable at the current time; this

equation provides S = S(G1, ). The smaller a crack

is, the longer the time is for the crack growth to

. :.: . ",: .-. . ,; , .. . j.

• ... -, . .4,. , ; -. ,
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become unstable, so that t<0. The body is stable if

a2WT/aS2> 0; from equation (39) one finds that dg/dS <

0. This condition on g not only assures stability, but

assures that the entropy production inequality, equation

(7), will be satisfied when t<O. If additional crack

orientations are introduced, the work potential will

depend in a similar way on additional structural

parameters.

We conclude that the work potential based on

unstable (micro)crack growth and arrest exhibits the

same behavior as that based on stable growth. The power

law time-dependence of Ws appears in both cases, except

its physical origin is different. For stable growth, it

reflects the direct effect of continuous growth, while

for unstable growth it arises from the time delay for

instability. The two types of growth may co-exist

without changing the form of time-dependence.

5. Global Viscoelasticity

One approach to developing a model which includes

viscoelastic effects throughout the matrix and fibers,

besides that at crack tips, would be to introduce a

rate-type evolution law for a portion of the internal

state variables, say Sa(a = 1,2,...B), of Section 2.

For example, for linear viscoelastic behavior with

damage given one would use (e.g. Schapery, 1964),

$8= bBy f (40)

where b By  is a symmetric matrix, and f = -aW/aS in

which W is quadratic in qj and S . The remainingY
internal state variables would be associated with the

damage, and thus obey equation (3); boy may depend on
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them. The problem with this approach is that the simple

crack growth theory in Section 3 and 4 is not in general

applicable because there is not a simple correspondence

between elastic and viscoelastic fields in the

continuum. Unless considerable simplification is

introduced in the description of the global viscoelastic

behavior of the constituent materials, it does not

appear to be possible to develop a practical analytical

model. Here, we shall briefly review a manageable

approach the author has used to account for linear and

nonlinear viscoelasticity of the matrix; it permits the

use of a slightly modified form of the crack growth

theory of Sections 3 and 4.

Let us give the constitutive equation without

damage and then discuss the modification needed in the

elasticity theory with damage. With small strains and

rotations the constitutive equation for any one of the

constituent materials or phases, in terms of stresses

oij and strains Eij(i,j = 1,2,3), is given as
ai= aWp/aE R (41a)R

where Wp= W pij) andR 1 jm
E E I  E(t-t,t) dT (41b)

are so-called pseudo strains. The quantity E(t-T,t) is

the relaxation modulus, allowing for aging through the

second argument, while ER is a free constant which can

be selected to have the units of modulus so that eR is

dimensionless. As discussed elsewhere (Schapery, 1981)

equation (41) contains the special cases (1) linear

isotropic viscoelasticity (if the Poisson's ratio is

constant), (2) nonlinear elasticity (E=ER) and (3)
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linear and nonlinear viscous theory. Inasmuch as W isp
like strain energy density, but is a function of pseudo

strains, we call it pseudo strain energy density. It is

easily shown that a multiphase continuum may be

characterized by equations like (41) if each of the

phases obeys equation (41) and all have the same

relaxation modulus; phase-to-phase differences are

reflected in the particular pseudo strain energy density

employed. If the deformations in any phase are

relatively small, so that it may be assumed rigid, then

of course its relaxation modulus is not restricted to be

the same as that for the other phases.

A simple correspondence exists between the

mechanical state of elastic and viscoelastic bodies,

with or without crack growth, when equations like (41)

are applicable (Schapery, 1981, 1984). Large

deformations may be taken into account by using Piola

stresses and deformation gradients (in place of

Cii); however, there is a basic limitation in that the

pseudo strain energy density may be significantly

affected by large rotations. This correspondence

enables us to use all of the theory in Sections 2-4 by

simply replacing qi with generalized pseudo

displacements,
R It dqi

qi = E' l E(t-T,t) di dt (42)

while retaining the Qi as generalized forces. The

superscript R comes from use of the name "reference
Relastic solution" for the set of variables (q1 , Qi);

they may be interpreted as the displacements and forces

in and on an elastic body which is identical to that of

the viscoelastic body except for the relaxation

{*
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modulus. Observe that when the q are used in Section

4, there will be hereditary effects due to both damage

growth and viscoelasticity of the continuum.

6. Conclusions

An approach to modeling the mechanical response of

viscoelastic composites with changing structure has been

described. Although the rate-type evolution law used

for the changing structure is that commonly identified

with crack growth, equations (11) and (19a), it is not

necessarily limited to crack growth. Indeed, the

approach may be used for any evolution law of the form

= F (f )F (S ) for each m, where F is a stronglymn m m m m m
increasing function of the associated thermodynamic

force fm. This is a special case of the form used by

Rice (1971) in a study of constitutive relations for

metal and other solids; he assumed m= 9m (fm,

for each m.

Experimental verification of the viscoelastic

behavior predicted by the simplified theory described

herein is presently very limited. However, existing

results on particle-filled rubber with constant and

varying damage (Schapery, 1982) and on fiber-reinforced

plastic with constant damage (Tonda and Schapery, 1987)

do support the theory.
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The Effective Properties of Brittle/Ductile
Incompressible Composites
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Abstract

A new variational method for estimating the effective properties of nonlinear
composites in terms of the corresponding properties of linear composites with
the same microstructural distributions of phases is applied to an isotropic,
incompressible composite material containing a brittle (linear) and a ductile
(nonlinear) phase. More specifically, in this particular work the prescription is
used to obtain bounds of the Hashin-Shtrikman type for the effective properties
of the nonlinear composite in terms of the well-known linear bounds. It can be
shown that in some cases the method leads to optimal bounds.

Introduction

PONIE CASTAfEDA (1990a) has proposed a new procedure for estimating the
effective properties of composite materials with phases exhibiting nonlinear
constitutive behavior. The procedure, which is straightforward to implement,
expresses the effective properties of the nonlinear composite in terms of the
effective properties of a family of linear composites with the same distribution

.. .... .. ...- 4 :
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of phases as the nonlinear composite. Appropriate references for the linear theory
of composites are given by the review article of WILLIS (1982) and by the
monograph of CHRISTENSEN (1979). The new procedure was applied in the
above reference to materials containing a nonlinear matrix either weakened by
voids or reinforced by rigid particles. Estimates and rigorous bounds were
obtained for the effective properties of such materials. The Hashin-Shtrikman
bounds (obtained via the new method from the linear Hashin-Shtrikman bounds)
were found to be an improvement over the corresponding bounds obtained by
PONTE CASTASMA and WILLIS (1988) for the same class of materials using an
extension of the Hashin-Shtrikman variational principle to nonlinear problems
proposed by TALBOT and WILLIS (1985). Recently, WILLIS (1990) has shown
that the Hashin-Shtrikman bounds obtained via the new method can also be
obtained by the method of TALBOT and WILLIS (1985) with an optimal choice of
the comparison material. More generally, however, the new procedure can make
use of linear higher-order bounds and estimates to yield corresponding bounds and
estimates for nonlinear materials. In fact, the new procedure can be shown to
yield exact results for a certain class of nonlinear composites. This is discussed
in detail by PONTE CASTAREDA (1990b).

In this paper we apply the general procedure to a composite containing a
brittle (linear) and a ductile (nonlinear) phase. We assume that the phases are
perfectly bonded to each other, incompressible and isotropic. Additionally, the
size of the typical heterogeneity is assumed to be small compared to the size of
the specimen and the scale of variation of the applied loads. It is further assumed
that the effect of the interfaces is negligible, so that the effective properties of
the composite are essentially derived from the bulk behavior of the constituent
phases. Both upper and lower bounds of the Hashin-Shtrikman type are given for
the isotropic composite as functions of the properties and volume fractions of
the phases. Specific results are given when the behavior of the nonlinear phase is
linear plus power-law, including the pure power-law case. Some of the bounds
are shown to be optimal (i.e., microstructures can be given attaining these
bounds).

Effective Properties

Consider a two-phase composite occupying a region of unit volume D, with
each phase occupying a subregion '4 (r = 1, 2), and let the stress potential,

U(a,x), be expressed in terms of the homogeneous phase potentials, U(r)(o),
via

2U(a,x) = x'x~~) (1)
'-I
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where

I if x ezK) 2"(x) {o otherwise (2)

is the characteristic function of phase r. The phases are assumed to be

incompressible and isotropic, so that the potentials U(')(o) can be assumed to
depend on the stress a only through the effective stress

4a= -SS,

where S is the deviator of a. Thus, we assume that there exist scalar-valued

functions P '" such that

Then, the stress field a, satisfying the equilibrium equations

orUi = 0, (3)
is related to the strain field e, related to the displacement field u via

1

C' = -i(u4j + u,), (4)

through the constitutive relation

dU
u =)(5)

The commas in equations (3) and (4) denote differentiation, and the summation
convention has also been used in equation (3). We assume that the phases are
perfectly bonded, so that the displacement is continuous across the interphase
boundaries. However, the strains and, therefore, the stresses may be
discontinuous across such boundaries, and hence equation (3) must be interpreted
in a weak sense, requiring continuity of the traction components of the stress
across the interphase boundaries.

We note that if we let a represent the rate-of-deformation tensor and u the
velocity field, the above equations can be used to model high-temperature creep,
as well as high-rate viscoplastic deformations. Here we will present our work in
the context of time-independent plasticity (deformation theory), but in view of
the above comment the results could be given appropriate interpretations in
nonlinear creep and viscoplasticity.

To define the effective properties of the heterogeneous material we introduce,
following HILL (1963), the uniform constraint boundary condition

IV# nj = & ni, X IE (6)
where 80 denotes the boundary of the composite, a is its unit outward normal,
ard 5 is a given constant symmetric tensor. Then, the average stress is precisely
--, i.e.

... , "- mmmm ml m ml mlll l ~ l
m
I I



218

da J (x)dV (7)
and we define the average strain in a similar manner by

=L e(x)dV. (8)

The effective behavior of the composite, or the relation between the average
stress and the average strain then follows from the principle of minimum
complementary energy, which can be stated in the form

0(MG = min U(G), (9)

U(0) = JU(ax)dIv

is the complementary energy functional of the problem,

S(U) = {alo",+ = 0 in 0, and an, = a,1 n on &2)

is the set of statically admissible stresses, and where we have assumed convexity

of the nonlinear potential U(oax). Thus, we have that

dUiFU da, (U) (10)
do'+

Our task will be to determine bounds and estimates for 0(d), which, under the

above assumptions, is known to be convex.

Bounds and Estimates

A new variational principle for determining bounds and estimates for the
effective properties of nonlinear composites in terms of the effective properties
of linear composites was proposed by PONTE CASTAIQEDA (1990ab). In this
section, we specialize the derivation given in PONTE CASTAFJEDA (1990b) for
the case where both phases are incompressible, and phase #2 is linear so that

1
,U() = 6---q ..

The new variational principle is based on a representation of the potential of
the nonlinear material in terms of the potentials of a family of linear
comparison materials. Thus, for a homogeneous nonlinear material with

" atger than quadratic" growth in its potential, U(a), we have that

"M.+:, :.i



219

U(C)> maxfU. (0)- V(U)), (11)

where

V(u) = max(U. (a) - U() (12)

and

u.(o =(13)

is the the potential of the comparison linear material.
To demonstrate this result, let

U(G) = 0(s), (14)

where s = o. Then, the Legendre-Fenchel transform of the scalar-valued

function * is given by
0'(a) = max(as - O(s)), (15)

where a is assumed to be positive. A well-known result in convex analysis
(VAN TIEL 1984, §6.3) is that

O(s) > max sa - 0*(a)), (16)
a6O

with equality if # is a convex function of its argument. With the identifications

s= . and a= (6A) - ', we can see that (11) and (12) are but simple re-
statements of (16) and (15), respectively. In particular,

V() = 00(17)

To derive the new variational principle, we apply (11) to the nonlinear phase
#1, and make use of the result in the complementary energy principle (9). Thus,
after some manipulations, we find that

m() f n(X{. (U)- 1 V(')(,u('))dV}, (18)

where

.m = ( (o), (19)

U.C, x) = 2

aXd

Ur$')IM) a1 2

'i""

C,.'
•.., ' ,g
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Note that the comparison linear material agrees with the actual material in phase
# 2 (which is linear). In the above derivation, we note that the comparison

moduli p5l) are functions of x, since the stress field Y will also in general be a

function of x within phase #1. If we assume that U()(o) is "strongly convex"

(i.e. if 0 is convex), then we have equality in (11), and hence, usually, equality
in (18). However, if the conditions for equality are not met, relation (18) still

provides a useful lower bound for U(s). An detailed derivation of this result,
discussing the precise conditions for equality, is given in PONTE CASTANEDA
(1990b).

The variational principle described by (18) roughly corresponds to solving a
completely linear problem for a heterogeneous material with arbitrary moduli
variation within the nonlinear phase, and then optimizing with respect to the
variations in moduli within the nonlinear phase. Thus, one can think of the
nonlinear material as a "linear" material with variable moduli that are determined
by prescription (18) in such a way that its properties agree with those of the
nonlinear material.

This suggests that if the fields happen to be constant over the nonlinear

phase, then the variable moduli p')(x) can be replaced by constant moduli pWo.

More generally, however, we have the following lower bound for 0(a)

= max c()v(((')), (20)

where c ) is the volume fraction of phase # 1. The result in this form is a special

case of a more general result first derived by PONTE CASTAREDA (1990a), when
only one of the phases is nonlinear, and the other one is linear.

We note that the prescriptions (18) and (20) lead to convex expressions for
the bounds and estimates of the effective potential of the nonlinear composite,
provided that the corresponding bounds and estimates for the linear composite are
convex. This is a desirable feature,, because the effective potential of the
composite is known to be convex.

Application to Hashin-Shtrikman Bounds

HASHIN and SHTRIKMAN (1962) prescribed bounds for the effective moduli of
linear-elastic, isotropic composites, depending only on the volume fractions of
the phases. When there are only two phases, these bounds have been shown to
be optimal (i.e., microstructures can be given that simultaneously attain the
bounds for thlv shear and bulk modulus) by FRANCFORT and MURAT (1987).



221

IC I

2 2 2

8<< e

Figure 1. Rank-2 laminate.

Their construction made use of iterated laminates for which the effective

properties can be computed exactly. Such materials are obtained by layering the
two constituent phases to obtain a rank-I laminate; the resulting material is once
again layered (in an arbitrary direction) with one of the original phases in a
smaller lengthscale. This procedure can obviously be iterated n times to obtain a
rank-n laminate. In general such materials will be anisotropic, but by choosing
appropriately the layer orientations at the different layering operations, it is
possible to obtain an isotropic composite, and its properties coincide with one of
the Hashin-Shtrikman (H-S) bounds depending on which constituent phase is
selected to play the role of the matrix material. Figure 1 depicts a rank-2
laminate (not to scale) with phase #2 as the matrix phase.

For the special case of incompressible materials, when there is only one
modulus for the composite, the H-S upper bound for the effective shear modulus
can be expressed in the form

-A ~if U () p U2)a(,u0), (2) ) if#)>#)

A2 i A ( c21)M2

(o2 + (312 + 230 ),0)
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and

_ 2) A + (3 + 2c( ')p 2) (23)
( (2+ 3c(")p(" +3C(2)1z'2"

The corresponding H-S lower bound is obtained by interchanging the expressions
in (21) for the upper bound (and keeping the conditions on the shear moduli i (')

andU (2) fixed).
The above H-S upper bound for the effective shear modulus yields a lower

bound for the potential of the linear material 3.. This information can be used in
combination with prescription (20) to yield a H-S lower bound for the potential
of the nonlinear material 0. On the other hand, upper bounds for C, do not
necessarily generate upper bounds for U.

The result for the lower bound on & dcpends on which of the two branches
of (21) is used in conjunction with (20). If U(') > U(2), then the average effective
stress U, must be such that the condition

3 12)f'() < 2, 4)
is satisfied (usually when the average shear stress is small enough). Here, for

simplicity, we have made the identification f(') = f. The corresponding form of

the bound is then
(25)

where

( c ( )f (s ) + .U (2 ) ( 2 + 3 f-.( 2.)
-- ~ - '-I Kf (S))2 (26)

1 2 ts ~

and s solves the equation

C( +A ~2(2 +3 )L L (2) (27)--31 3c<' I2
On the other hand, if pi(l) </11 2 ) , then the average effective stress a. must be

such that the condition
3#Mp( f(.) > a., (28)

is satisfied (i.e., when the average shear stress is large enough), and

(- ('a) = 2 (a,). (29)

o.,... .. .. -.. -¢.. . -,
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where

12 i =c~1 f~s +(3 + 2c(')8+ c(1)(2 +3c( 1)s2 - I0c('sa. 30¢1) )f . 18c(2)/(2) (30)

and s solves the equation

9c(2')Ap 2f'(s) = 5U, - (2 + 3c~l, )s. (31)
The corresponding stress/strain relations 1have the form

(32)
whe

- 2 (3 + 2c 1))r - 5c(1)s
f2XV.,)= -3 6¢(2 , ,2 - (33)

but 1,ta'.) does not have a simple expression.

In general, we do not expect the above lower bounds for J to be optimal. In
fact, expression (25) does not yield an optimal bound if condition (24) is
satisfied. However, it is shown in PONTE CASTARJEDA (1990b) that if condition
(28) is satisfied, then the bound (29) is optimal. This is because the same
microstructure attaining the linear bounds can be also shown to attain the
nonlinear bound; the reason being that the fields are constant in the (nonlinear)
inclusion phase, and hence expressions (20) and (18) are identical. Similar
observations have been made by KOHN (1990) in a similar context (starting from
the Talbot-Willis nonlinear variational principle) and, independently, by PONTE
CASTAEDA (1990c) in the context of conductivity.

Conversely, in general, we do not expect that interchanging conditions (24)
and (28) would turn expression (25) and (29) into upper bounds for the nonlinear
potential 0. This is contrary to the corresponding operation for the linear
composite. All that can be said, however, is that expression (29) is an estimate
for the upper bound for 0 if condition (24) is satisfied and that expression (25)
is an estimate for the upper bound for 0 if condition (28) is satisfied. Both of
these estimates are expected to get progressively better with weaker
nonlinearities.

Application to Power-Law Behavior

In this section, we specialize further the calculations of the previous section by
taking the comaituve behavior of the nonlinear phase to be governed by a linear
plus power relation

-*1
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E. [i + ]C..(34)

Note that the case u -,00 corresponds to pure power-law behavior, and the
limits n -+1 (in addition to + -,) or 71 - - correspond to linear behavior.

The conditions (24) and (28) determining the appropriate branch of the
bound specialize to

<1 (35)
A 1l

and the opposite inequality, respectively. The first condition guaranteeing that
(25) is a lower bound (and correspondingly that (29) is an estimate for the upper
bound) corresponds to small enough average stress on the composite.
Alternatively, the second condition (with > instead of <) corresponds to
sufficiently large average stress. Note that, if p(2)/ > 1, condition (35) can
never be satisfied and, conversely, the alternative condition is always satisfied.
This condition ensures that the difference between the potential of phase #1 and
that of phase #2 is convex. Here, we will consider two cases: one case, meeting
this condition, with (2)/p = 2, and the other with U(2)/A = 0, corresponding to
the pure power-law case.

The results for the bounds (25) and (29) specialized to the case when (34)
holds can be expressed in the form:

UC2(() -F~fiA 2) sq 1A (2,C (2,nl (36)
U()() r,[2 ,11 A 11

where the precise form of F depends on whether (25) or (29) applies, and
(2)/r7);&: ' plays the role of the independent variable, with UZ2)/U, C( 2) and n,

serving as parameters.
Results for the upper and lower bounds for C are given in Figures 2 and 3

for the case whereg(2)/ = 0, and in Figure 4 for the case where 2u(/ = 2. In
the first case, condition (35) determining whether (29) is an estimate for the
upper bound or an optimal lower bound, and whether (25) is an estimate for the
upper bound, or a non-optimal lower bound, simply reduces to the condition of
whether the independent variable (/ (2)/jj) i-1 is less or greater than unity. For
that reason, we give results emphasizing the small stress and large stress
domains, separately, in Figures 2 and 3, respectively.

In each plot we have three sets of curves corresponding to three values of
c2) (0.1, 0.5 and 0.9). Additionally, we show the limiting cases corresponding

to c(2)- 0 and c(l)2 1. These limiting curves appear as straight lines, one with
with variable slope depending on the value of n and p()/p, and the other with

.. .:, , , ,.. ,, ., -,
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n--32) 1 c( 1)=O.

0.8 cO=O.l
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0.4/

42))/=0n

/ C(2)-O.lF 42)=o.
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Figure 2(a). Plots of the bounds for the effective energy of the
composite as functions of the average stress (appropriately normalized)

for po//i = 0 and n = 3 (small stress).

zero slope (value equal to unity), respectively. The intermediate sets of curves
correspond to the upper and lower bounds.

In Figure 2, depicting results for two values of the nonlinearity parameter
(n = 3 and 10), the continuous line corresponds to the estimate for the upper

bound (for 0), and the dashed line corresponds to the rigorous lower bound. In
Figure 3, showing also results for the same two values of the nonlinearity
parameter, the continuous line corresponds to the optimal lower bound, and the

dashed line is an estimate for the upper bound. For this value of U(2'/, the
upper and lower bound coalesce when the value of the independent variable

4"
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Figure 2(b). Plots of the bounds for the effective energy of the
composite as functions of the average stress (appropriately normalized)

for A ',/AL = 0 and n -= 10 (small stress).

(p( 2)/q))r-4 approaches unity. In the linear case, this behavior corresponds to

the limit of the moduli of the phases approaching each other. More generally,
assuming that p 2)/p is less than unity, there is a value of the independent
variable (i.e., an average stress level) at which the bounds are equal, and hence
the effective energy of the composite is known exactly. This phenomenon is
related to the lack of convexity of the difference between the potentials of the
nonlinear and linear phases.

In Figure 4, depicting results for the same two values of the nonlinearity

parameter, the continuous line corresponds to the optimal lower bound (for 0),
and the dashed line corresponds to the estimate for the upper bound. In this case,
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4

3

2

0 2 4 6 8 10

Figure 3(a). Plots of dhe bounds for the effective energy of the
composite as functions of the average stress (appropriately

normalized) for MafL=0 and n = 3 (large stress)

with a convex difference between the nonlinear and linear potentials, there is no
value of dhe independent variable for which the upper and lower bound are equal.

* Both in Figures 3 and 4, we observe that the lower bound approaches a
* straight line with zero slope and the upper bound approaches a straight line with

slope depending on the value of nt (smaller for larger n). This is consistent with
the following asymptotic behaviors for the lower and upper bounds

OM .( +xi4)(7
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Figure 3(b). Plots of the bounds for the effective energy of the
composite as functions of the Average stress (appropriately

normalized) for IA"A= 0 and n = 10 (large stress)

L() RD~~ (38)

with

(C MY. 4n/
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unu32 ) 5 -

n - V3

c(2)=O.1
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0 ' I I ' I

0 2 4 6 8 10

Figure 4(a). Plots of the bounds for the effective energy of the
composite as functions of the average stress (appropriately

normalized) for jua'/u = 2 and n = 3.

respectively. These two behaviors correspond physically to the cases of a linear
matrix with voids and a power-law matrix with rigid inclusions (studied by
PONTE CASTA1REDA, 1990a), respectively. The reason for these behaviors is that

the lower bound (for U) corresponds to putting the stiffer material in the matrix
phase and the less stiff material in the inclusion phase (and viceversa for the
upper bound). Clearly, for large enough stresses, the linear phase is stiffer than
the nonlinear phase.

We note that accurate numerical calculations of the potential of a power-law
matrix with spherical rigid inclusion have yielded results of the form (38) with

o=l+ (n)c(2) as c 2'-40, (40)

4(8n

'-.. ,r~
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0 2 4 6 8 10
(U(2)/,, )jj-I

Figure 4(b). Plots of the bounds for the effective energy of the
composite as functions of the average stress (appropriately

normalized) for A. /u = 2 and n = 10.

where g(n) is such that g(1) = 5/2, g(3) -3.21 and g(10) - 6.09 (LEE and MEAR,
1990), and g(n) -+ 0.38n as n -+ - (HU TCHINSON, 1990). These results do not
compare very favorably with the corresponding results from (39): 512,4.00,9.25
and 0.75n, but it should be recalled that these results correspond to the case for
which we do not have a rigorous bound (it is simply an estimate of the bound).
None the less, the results of (38) with (39) may provide reasonable estimates for
larger values of the volume fraction of the linear phase.

- ' 7,
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ABgSrACr
The dominant compressive failure mechanism of modern
fibre composites is microbuckling. This is
demonstrated in the form of a fracture map. For
polymer matrix composites microbuckling is a plastic
event. An analysis is presented of both elastic and
plastic microbuckling of unidirectional composites
under remote axial and shear loading. The effects of
fibre misalignment and inclination of the band are
included. We find that a simple rigid-perfectly
plastic analysis suffices for plastic microbuckling; it
demonstrates that the axial compressive strength
increases with decreasing fibre misalignment,
increasing shear strength of the matrix, and decreasing
remote shear stress. Finally, a calculation is
performed of the remote axial and shear stress required
to propagate an existing microbuckle. We find that the
axial propagation stress is typically less than the
shear yield stress of the matrix material.

1. INrrmW=

Most fibre reinforced polymer matrix composites have a

compressive strength less than their tensile strength
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due to microbuckling of the load bearing fibres aligned

with the c1c.aing direction. In rany app)icatins

compressive strength is a design limiting feature.

Over the past ten years significant improvements have

been made to the tensile strength, impact resistance

and toughness of these composites. Unfortunately,

compressive strength has shown little concomitant

improvement.

In this paper, previous experimental studies

and theoretical models of microbuckling are reviewed.

A new analysis of microbuckling is presented, based

upon the kink band analysis of Budiansky (1983). The

composite is subjected to remote axial compression and

shear. Material inside and outside of the kink band is

taken to be homogeneous but anisotropic. The kink band

response is calculated for a variety of constitutive

behaviours: (I) elastic, (2) rigid-perfectly plastic,

and (3) elastic-perfectly plastic. An analysis is then

given for the remote axial and shear stress required to

propagate a microbuckle zone into undamaged material

across the section of a specimen. The analysis is

based upon a simple energy balance. We find remarkably

low values for the propagation stress. This suggests

that the compressive failure stress of large sheet

structures containing a microbuckle near a stress

raiser may be much less than that predicted for small

undamaged specimens.

The paper deals only with the response of

unidirectional unnotched composites. In many practical

applications notched multi-directional composites are

used. A design methodology is now emerging to deal



237

with the effec ts of notches and off-axis plies (see for

example, Starnes and Williams (1982), Rhodes, Mikulas

and McGowan (1984), Soutis and Fleck (1990) and Soutis,

Fleck and Smith (1990)).

2. PREVIOUS THEDRETICAL WORK

Rosen (1965) assumed that compressive failure is by

elastic microbuckling: he modelled the fibres as

columns supported by an elastic foundation. He

recognised that the composite plate may be a short

stiff structure which does not buckle in compression on

the macroscale, but the individual, fibres have small

diameters and buckle as slender columns on the

microscale. Two possible buckling modes were

distinguished, the shear mode and the extension mode.

For the shear mode, shear deformation occurs in the

matrix material, and the compressive strength ac is

given by,

G

a l (2.1)c 1-v f

where Cm is the shear modulus of the matrix and vf is

the fibre volume fraction. In the extension mode,

matrix material suffers direct straining in a direction

transverse to the fibre axis. The shear mode predicts

a lower strength than the extension mode and is assumed

to dominate.

The Rosen anaysis overpredicts strength

typically by a factor of four. This suggests that

microbuckling is a plastic rather than an elastic

event. Several investigators (eg. Lager and June

l .
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(1969)) have introduced empirical correction factors in
order to improve the agreement betwoten the Resen theory
and experiment.

Argon (1972) and Budiansky (1983) identif led
the shear yield stress k of the matrix material and the

initial misalignment angle i of fibres in the
microbuckled band as the main factors governing the

compressive strength.The misalignment angle *., and band
Inclination ji are defined In the Insert In Fig.l. For a

microbuckled
band

S fibre

600 rmicrobucking fibre collapse

40 0 0 40 5

(Mpk -M 0

[ILL~20 Efeto haryedsrs ko oyse

Mtri Effon Corshea yi stresso gls and polevtar

composites. Data taken from Piggott and Harris (1980).

0,~
M,.
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rigid-perfectly plastic matrix material, Budiansky

found that the uomressive strength a is given by

k*
a (2.2)

c

where,

k -k (1 + (!) tan 23)4 (2.3)

and aTy is the yield stress of the composite transverse

to the fibre direction.

There was little need to include fibre bending

explicitly in the analysis: a kinking analysis suffices

wherein material in the microbuckled band is treated as

a homogeneous anisotropic solid. This approach is

developed later in the present paper.

Recently, Steif (1988) has modelled the effect

of fibre-matrix debonding upon the elastic

microbuckling of fibre composites. The model is an

adaptation of the Rosen analysis to situations where

slip occurs at the fibre-matrix interface; slip begins

when the interfacial shear stress attains a critical

value. Interfacial shear failure is similar in many

respects to shear yielding of the matrix. Steif's

model gives reasonable predictions for ceramic matrix

composites when the wavelength of the buckle equals the

specimen length. This assumption is unrealistic.

3. AVAILAKE EXPERINVTAL EVIENCE

From the published literature it is apparent that

unidirectional composites fail by two distinct failure

mechanisms, fibre microbuckling and fibre collapse.

When the matrix yield stress is sufficiently

.6"

A" 61 i i
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high, the fibres suffer compressive collapse. This is

due to fibwre yielding in the case of steel or Kevlar

fibres (see Moncunill de Ferran and Harris (1970),

Greszczuk (1972, 1975), Piggott and Harris (1980), and

Piggot (1981)). Alternatively, fibre collapse is by

compressive fracture from defects in the case of carbon

fibres or glass fibres (see Ewins and Ham (1973), Ewins

and Potter (1980). and Piggott and Harris (1980)).

Available experimental evidence for polymer

matrix composites supports the hypothesis that

microbuckling is a plastic rather than an elastic

phenomenon. A summary of the measured compressive

strengths for unidirectional, carbon fibre polymer

matrix composites is given in Table 1. The first three

Composite a ,- G7 (Pa) k (MPa)
System Ref. c

T800/924C Soutis (1989) 1615 6000 60 2.60

HITEX U.S.Polymeric 1447 5510 40 1.4 °

12K/E7jK (1990)

HITEX 46- U.S.Polymeric 1274 4400 67 3.0°

3B/E7KST (1990 1

AS4/PEEK 1Jelf (1990) 1200 4000 78 3.4°

HS/MY720 Curtis and 400 3000 55 7.50

(Woven) Bishop (1984)

Table 1: Comparison of measured compressive strength
a cof unidirectional carbon fibre polymer matrix

composites with predictions of the Rosen model,
equation 2.1 and the Budiansky model, equation 2.2.
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data sets refer to carbon fibre epoxy composites, the

system ASV/PEEK is a carbon fibre Peek composite, and

the system HS/MY720 refers to a carbon fibre epoxy

0°/900 woven layup. The table includes predicted

strengths by the Rosen (1965) model, and the inferred

misalignment angle Tby substituting strength values a

and k into equation 2.2. For simplicity we assume

=0 so that k* = k. The error in the inferred values

of * is at most 20% by this approximation, for typical

values of ET/G and 13. We conclude from Table 1 that

the Rosen model overpredicts compressive strength by a

factor of approximately 4. The inferred values for T

from Budiansky's model, equation 2.2, agree with

typical measurements of *, Jelf (1990). For polymer

matrix composites, the matrix yields rather than

microcracks. We are justified in viewing k as a

plastic yield stress.

Direct experimental evidence to support

equation 2.2 comes from measurements of the

microbuckling strength of glass fibre and Kevlar fibre

reinforced polyester by Piggott and Harris (1980).

They varied the matrix shear yield stress by

controlling the state of polyester resin cure from just

jelled to fully cured. The compressive strength is

proportional to k, provided that failure is by

microbuckling, see Fig.l. This behaviour supports

equation 2.2. The slope of the graph in Fig. 1 gives

* = 3.7, assuming 0 = . When k is increased to

sufficiently high values the glass or Kevlar fibres

collapse prior to microbuckling.

i u 4'.
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Early carbon fibre epoxy composites failed by

fibre collapse at test temperatures below approximately

1O0OC, see Fig. 2. At higher temperatures

microbuckling occurred; the progressive decrease in

microbuckling strength with increasing temperature T

for T > 100°C is associated with the decrease in matrix

shear yield stress k with increasing T, in accordance

with equation 2.2. Over the last decade the

compressive strength of carbon fibres has doubled,

while epoxy matrices have changed little in strength

, (MPG)

".2000

fibre-collapse
(XAS carbon microbuckling
fibre)

1500--

1000-
\x

fibre- collapse
(HT-S carbon X
fibre) microbuckling \X

500 x

S , , I I II

-100 -50 0 50 100 150
T (0c)

Fix. 2: Effect of temperature T upon failure strength
a c of carbon fibre epoxy matrix composites.

Experimental data x-x are taken from Ewins and Potter
(190). The dotted line gives the typical response of
more recent systems.

4 >.....
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due to demands for high impact strength and high

toughness of the composite. Thus the transition

temperature from microbuckling to fibre collapse has

shifted from approximately 100"C to -40C (Barker and

Balasundaram (1987)), as shown in Fig. 2. Thus present

day carbon fibre epoxy composites fail by microbuckling

at ambient and at elevated temperatures.

The failure mechanisms exhibited by a

unidirectional fibre composite may be summarised in a

fracture diagram, with axes e/* ind Gm/(l-vf) , as shown

in Fig. 3. Failure is by three distinct mechanisms:

1. Elastic microbuckling. Rosen's analysis predicts a

microbuckling strength ac given by equation 2.1.

o o 0 o
a. a.

0 01 011

1000 Fibre
EscCollapseElastic I /

.k microbucklingI l i /, , 54 0MPa
I I C Data from Piggott

(MPG) Iand Harris (1980)

_200MPa
~O'€ = IOOMPo

0 500 1000 1500

(MPG)

Flit, Fracture map for glass fibre polyester matrix
composite. Data taken from Piggott and Harris (1980).
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2. Plastic microbuckling. The Budiansky analysis

predicts a strength given by equation 2.2. For

simplicity we assume P = 0, hence k* = k.

3. Fibre collapse. This occurs when the stress in the

fibres attains a critical fracture value af, such that

ac = vf f (3.1)

The fracture diagram contains contours of

compressive strength a given by equations 2.1-2.3 andc
3.1. The boundary of the fibre collapse regime depends

upon fibre volume fraction vf: otherwise the diagram is

unique for a given fibre reinforcement.

Data for glass fibre reinforced polyester are

included in Fig. 3, taken from the work of Piggott and

Harris (1980). The data are replotted from Fig. 1.

The experimental values support the common finding that

the yield stress and elastic stiffness of polymer

matrices scale in a linear fashion: thus the

compressive strength of the fibre composite varies

linearly with elastic modulus. This has led several

investigators (for example Dow and Gruntfest (1960) and

Rosen (1965)) to conclude erroneously that

microbuckling is an elastic event for polymer matrix

composites.

It is clear from the fracture diagram that the

maximum attainable compressive strength is dictated by

the intrinsic compressive fracture strength of the

fibres. This strength is rarely achieved in practice

for polymer matrix composites; requirements for high

composite toughness and impact strength dictate the use

of matrices with a low yield stress and high ductility.
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Thus, plastic microbuckling is the usual failure mode

in compression.

The ceramic matrix of ceramic fibre/ceramic

matrix composites displays a non-linear response due to

plasticity or to microcracking, Evans and Adler (1978).

A plastic microbuckling analysis remains appropriate

for such systems.

Preliminary unpublished tests by the authors

show that elastic microbuckling occurs in a glass

fibre/silicone rubber matrix composite. No systematic

experimental investigations of elastic microbuckling in

elastomeric matrix composites were found from the

literature.

4. KINKMhG ANALYSIS

We shall analyse the behaviour of a kinked band of

infinite length and finite width w, oriented at an

angle 1 as shown in Fig. 4. First we consider the

'z1L
e,

. . .. Tibre

kink band

FIL.4: Detailed geometry of kink band.

• r,~
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kinematics and equilibrium of the band. In subsequent

sections we explore the effect of the constitutive

behaviour upon the buckling response.

4.1 Kinematics

We assume inextensicnal fibres but allow the composite

to undergo direct straining transverse to the fibre

direction, and shear straining parallel to the fibre

direction. The fibres are assumed to have broken along

the boundaries of the band. We smear out the fibres

and matrix, and consider the composite to behave as a

homogeneous anisotropic solid. Fibre bending is not

treated explicitly; Budiansky has included the effects

of fibre bending elsewhere, Budiansky (1983). He found

that except for its role in setting the kink band

width, fibre bending has only a small influence on the

collapse response and can be neglected for most

practical applications.

Consider the buckled band shown in Fig. 4. An

arbitrary point P has a position vector r,

r =1  -1 
+  

2 2  (4.1)

in terms of Cartesian co-ordinates (E1,E2) and fixed

orthonormal base vectors (_U,!_2) which are

instantaneously aligned with the fibre direction in the

band. The velocity v of the point P is

X = ymel + (4.2)

where ;a is the remote shear strain rate parallel to

the unbuckled fibres, ; is the rotation rate of the

fibres in the band, and the fixed unit vector el, and

lengths x and y are defined in Fig. 4. We assume the

- k .
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remote direct strain rate transverse to the fibres

equals zero.

The velocity strain rate e in the band is

Y = -  + (_Y v)T )  (4.3)

where the superscript T denotes the transpose and the

gradient operator v is
a a

V + F- 2 (4.4)

The quantitites x. y, f, and E 2 are related by

x = + 2 tan (P-T- )

and, Y = E2 cosP sec (P - ;F - #) (4.5)

Here, j is the initial misalignment angle of

fibres in the band; it serves as an imperfection.

Unit vectors el and e 2 , aligned with respect

to the remote fibre direction as shown in Fig. 4, can

be resolved into the a and e2 directions as,

t_ = _l cos(T + E) - -2 sin(j +

_2 = El_ sin(# + #, + e2 cos(O + #) (4.6)

We can now evaluate the strain rate via

equations 4.2 - 4.7, to give

= (#tan(P-#-#) -;o cos 0 sin(.j+#) sec(0--0))eA2

+ 4(i., cos(cos( +0)sec(3-0-0))( ,2 + 6261) (4.7)

But a equals (eT t2A2 + 31;tE + 62-F1))

where by definition ;T is the direct strain rate

transverse to the fibres in the band, and ; is the

shear strain rate in the band. Identification of this
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expression for e with equation 4.7 gives,

;T = tn(3-*- ) -= cos 13 sin('+*) sec(P-T-#)

and, = + ;w cos 1 cos(T+ ) sec (P - T- #) (4.8)

For the case of vanishing remote shear,

equations 4.8 may be integrated directly to give,

eT =On [cos(-i-#)]

cos(P-#)

and -=r . (4.9)

The band boundary rotates at a rate b which

depends upon the remote shear strain rate ,

b = - ;00cos2 p (4.10)

Integration of 4.10 yields,

tan3 = tanp° - - (4.11)

where 13 is the initial inclination of the band.

4.2 Equilibrium

Now consider equilibrium of the band. Equating the

traction on both sides of the band boundary gives,

n * o= n * a (4.12)

where n = el cos3 + e2 sin 13 is the unit normal to the

band, the remote stress o is,

= - oc el e_ + 7w (it t2 + e2 e) (4.13)

and the stress inside the band a is,
=L t &I + 17T k2 e + v +2 +T) (4.14)

Here aL is the direct stress in the fibre direction.
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Substitution of 4.13 and 4.14 into 4.12, gives

via 4.6 the two equilibrium statements,

- o cosp cos(T + + T- sin(P + +

T sin(- -) + aL cos(P- -) (4.15)

and ow cos 3 sin( + 0) + T cos(3 + *+)

T cos(- - ) + aT sin(P - j- ) (4.16)

The longitudinal stress aL along the fibre

direction in the band is of limited interest (the

fibres are inextensional), and we consider equation

4.15 no further. The stress components aT and T are of

interest, and appear expiicitly in our suggested

constitutive laws for the band; we shall make extensive

use of equation 4.16 in the calculation of the buckling

response of the kinked band.

Note that the stress rates 0L' UT and T

defined with respect to the rotating fibres are

objective stress rates which are not equal to the

Jaumann stress rates. Nevertheless, they appear to be

the natural choice.

5. ELASTIC NIRO XXLING

In this section we calculate the buckling load and the

post buckling response for an elastic composite under

remote compressive axial stress oa and remote shear

stress T,. Material inside and outside of the kinked

band has a transverse stiffness ET and a shear

stiffness G, such that,

TO Q=G , T G-,U T =ETeT (5.1)
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For simplicity, we assume remote proportional loading,

7-= eCO~ (5.2)

where the dimensionless parameter e is fixed, and

neglect the presence of any imperfections, T = 0.

Budiansky (1983) has argued elsewhere that

imperfections produce only small knock-down factors

upon the buckling load, and can be neglected.

First, we calculate the buckling load. We

differentiate the equilibrium equation 4.16 with

respect to #. and make use of equations 4.8, 4.10, 5.1

and 5.2, to give,

whr~f() fl(O) d(a,/C) =s c2(os (5in.3

whre f(# Eopsin# . + e r- sin4. tan( 13 -4.)

+ eco(P+ ) e2 CScPos(13+ ) e-op o)

f2(0.) COS(1 - 4.) + ~.sin((3- .

+ ! in((3 -4) tan(13 -4.) UT -cos(3 4.

- .cosj3 cos4. + e ~Gsin(13 + 4.) (5.4)

In the limit #. -i-0,fj(4.) -* 0. Hence f2(0) = 0

by equation 5.3, and the buckling load o-IG is

OW .1+-H tan2 P
c G 0 (5.5)

I l- 2etan P
In equation 5.5, 03 is defined as the limit of P3 as

* -, 0, and not the Inclination of the band boundary at

CF =M 0.
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That is, PO is the initial inclination at buckling.

Surprisingly, we find from equation 5.5 that a

negative value of remote shear stress -t = e ow reduces

the buckling load. For a fixed 'r/ow value there

exists a critical initial inclination Pc such that oa/G

Is a minimum; this is demonstrated in Fig. 5a.

(a)

1.5

CF10 
0 0.1 -0.3

G

1. 0

0-5-minimum, 
P3= 1c

0.5

0 - I I I I

0 10 200 300

Fit.5(a): Effect of initial band inclination 0o upon

the elastic buckling stress oc, for the case =T/= 4.

- - ...
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An interaction diagram showing the buckling

locus for P° = P c is given in Fig. 5b. The collapse

locus is sensitive to the value assumed for Fr/C,

(Typically, E/C Z 4). Equation 5.5 predicts Pc = 0

for the limit of vanishing remote shear stress. This

is in disagreement with typical measurements of band

angle for ceramic fibre polymer composites, where the

observed angle is P° = 10" - 30 ° . Budiansky (1983)

argues via an elastic bending analysis that geometrical

imperfections induce the onset of plastic yielding

along an inclined domain at Po > 0. Thus, in order to

achieve P o > 0 we must assume the presence of

imperfections and assume the material is able to yield

plastically.

(b)

C200 05~

V ~ ETO/G =10

110 5"

G 51fET//G 4/

io kPok lu f

0.5-

.... 4 EoT/O =1

"ET/G 0 0.1

[ -45'

0 0.5

FK5b: Interaction diagram for elastic
"mirobucklilg. Plot of buckling locus for weakest

inclination P = c for a range of ET/C values.

IN ..... 1 ,
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For most practical cases ET/G > 1 and the

presence of remote shear has only a small influence on

the buckling load o-/G as shown in Fig. 5b.c

5.1 Elastic Post Buckling Response

The post buckling response is determined by integrating

numerically a system of 4 linear 1st order differential

equations:

d=(o-IG) T T
h,(

d(aT/G)a

d(UV/G) OW T 0_

d# h3 (G- IGU I U-

d = h, (E, , CT (5.6)
d# ( T G 3,

The function h, is given by h - f 2 /f 1 from

equations 5.3 and 5.4. Functions h2 , h3 and h4 follow

naturally from equations 4.8, 4.10 and 5.1,

f2
h2 = 1 + e I- cos # cos 13 sec(P3-
h3= -E tan( -f2 E sin rcos P sec(P - )

f2
and h 4 = -e cos

2 p r' (5.7)

The system of equations 5.6 is integrated from

* = 0 using a Runge-Kutta scheme. Since fl(#) and

f 2 (#) are of order # for # small, care is required in

evaluating h, = f2/fI for small #.

Typical results are shown in Fig. 6. For

0 = 0 and all Tolo/, the post buckling response is

stable: ow/G increases with increasing #. For 13 > 0,

' t . . . ' .,0
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a softening post bifurcation response is displayed.

Now consider the effect of -/ro" upon the buckling

response, as shown in Fig. 6. When 7rw/ow = 0, the

minimum buckling load ow/G is achieved at P° = 0. When
c

Ta/Oao = -1, ro/G is a minimum at P. = 11.7*; the post

buckling response for this critical orientation is

softening initially and hardening later. A

snap-through response is predicted at large values of

[rTS/o-i and P0 , such as rco/o - -1, (0 = Mo.

2.5-

S o0

o 300, -T -

2

0.5F

1~ ucln--3' -1

0,5,,  100 200 300

Fit.6: Elastic post buckling response, ET/C = 4.

i ~ -
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6. PLASTIC IOBUCKDIC

Polymer and metal matrix composites usually fail by

plastic microbuckling. Budiansky (1983) has previously

analysed plastic microbuckling by considering the

response to remote axial stress o0 of a kink band made

from rigid-perfectly plastic material. We begin by

generalising this analysis for the case of a remote

stress a0 with a remote shear stress 70 Then, we

consider microbuckling of an elastic-perfectly plastic

solid under combined axial and shear stress. Plastic

microbuckling in a strain hardening solid will be

addressed in a future publication.

6.1 Rigid-Perfectly Plastic Solid

Consider the response of a rigid-perfectly plastic

composite containing a kink band as shown in Fig. 4.

The material is loaded remotely by an axial stress a-

and a shear stress 7-. In general, the kink band is

inclined at an angle f3, and fibres in the kink band

suffer an initial misalignment T.

During collapse, non-proportional plastic

straining occurs in the kink band. Remote -material

remains rigid, thus 13 is constant and we can drop the

distinction between 13 and 3 . Inclined kink bands

induce transverse stresses at the initiation of

kinking, so that a combined-stress plasticity law must

be invoked. We use arbitrarily a quadratic yield

condition,
£7

(k)2 + (,7) = 1 (6.1)

Ty
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where k and CTy are the shear and tensile transverse

yield stresses of the composite with respect to the

fibre direction.

It appears reasonable to assume that an

associated plastic flow rule applies. Then, by

normality, =

k

7= (-)2 - (6.2)Ty

where the non-dimensional parameter X is positive for

active plastic straining.

Combining equations 6.2 with eqlations 4.8

(recalling that -o = 0 since remote material is rigid),

gives,

- aTy 2

oT  T (k) tan (I- - ) (6.3)

and, via equation 6.1,

r = k(l + (:!I) tan2 (13 (6.4)

We can now obtain an expression for the or

versus 0 collapse response, by substituting the

equations 6.3 and 6.4 into 4.16,

k(+( k tan2 ( 044)) cos(ICOS3- )_T-cos(3+P4-*)

cosJ3 sin(0+0)
(6,5)

For small T and , this simplifies to,

o, T- (6.6)

wherek* a k (I + (.)2 tan 2 1) as given by equation

.,rnr'k
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2.3. Equation 6.6 has been given previously by Batdorf

and Ko (1987) in the limit (3 = 0. In the case of

vanishing remote shear, equation 6.6 reduces to

equation (2.2), given by Budiansky (1983).

For simplicity, we shall consider proportional

remote loading with ir = eo0 . Equations 6.5 and 6.6

then reduce to,

a,1
a- = -k- ' cos03sT

(6.7)

and, O = + + (6.8)

*T
respectively.

Results

Equations 6.7 and 6.8 are compared in Fig. 7. We

- Equation 6.8. all P
-, - Full solution, equation 6.7

0 a

,50 100

FI.7 Accuracy of small * approximation for
microbuckling of a rigid-perfectly alastic solid.

0Ty/- = 00 -= =°.

P =200l
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deduce that the small (j + *) approximation is

adequate. Matrix failure or fibre-matrix debonding

occurs at small values of # (typically 30) and the kink

band then loses its load carrying capacity. Thus,

equation 6.8 suffices over the range of validity of the

analysis.

It is evident from equation 6.8 that the

maximum value of remote stress o (at 0 = ) is

critically dependent upon the misalignment angle *. As

T tends to zero, o becomes unbounded; there is no

finite bifurcation load for the perfect structure. The

implication is that the materials manufacturer should

arrange processing conditions to maximise fibre

alignment, and thereby minimise *.

We also deduce from equation 6.8 that a

positive shear stress T- reduces the buckling stress

o. This contrasts with the case of elastic

microbuckling where a negative value of T- reduces the

bifurcation value of o-. To gain insight into this

apparent paradox we consider next the buckling response

of an elastic-perfectly plastic solid.

6.2 Elastic-perfectly Plastic Solid

We now examine the buckling response of an

elastic-perfectly plastic composite, of geometry shown

in Fig. 4. Consider the general case of the kink band

inclined at an angle P, loaded remotely by o and T-.

The fibres in the band have an initial misalignment *.
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Typically, the response consists of two stages:

(a) An initial elastic response, followed by

(b) Matrix yielding and an elastic-plastic response.

We are interested in the early stages of

deformation, and assume that #, the various strain

measures and j are each small,such that equations

4.8 simplify to,

I~ + "m, eT ~ tan 0  (6.9)

The shear strain in the remote material YOD

remains less than the shear yield strain i (= 0.1%-I%)

throughout the response. Thus 13 _ /o by equation 4.11.

(a) Initial Elastic Response

The equilibrium equation 4.16, the constitutive law 5.1

and equation 6.9 may be combined to give the initial

elastic response,

Yo (C + ET tan 20) (

(I - 2 e tan3) (+6

Here, as elsewhere, we assume remote proportional

loading with Tw = e o-.

The matrix yields when equation 6.1 is

satisfied. At this instant # attains the yield value

Sy. Application of 5.1 and 6.9 gives,

T =G = G(#y + e -)

cT  ETe T = ET Oy tan P (6.11)

The value of 00 at which yield commences, a- = c-, is
y

determined by substituting equation 6.10 and 6.11 into



260

the yield condition 6.1, and solving for ao by the

Newton-Raphson method. Predictions are compared in

Fig. Sa with the buckling stresses o, To for a
C

rigid-perfectly plastic solid,

c (6.12)c

which is a restatement of equation 6.6 with * 0.

It is clear from Fig. 8a that the collapse

locus given by the rigid-perfectly plastic solid well

Collapse locus, rigid-plastic
1.0 - solid. Equation 6.12

Onset of yield in elastic-
plasfic solid.

k

0 5-5 = 30 0 = 0 .

_=20,, :I,\"

= 100

'\ \

! \

0.5 T 1.0

k*

FlK.8(a): Comparison of collapse load Ck W  for

rigid-perfectly plastic solid with onset of yield load

owy/k for elastic-perfectly plastic solid.
y

EG (aTy/k) =4. = , -r k/G = 0.001.ET/G4, 2 ° y
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approximates the onset of yield in the

elastic-perfectly plastic solid. A positive shear

stress T- decreases both the buckling stress ow for the
c

rigid-perfectly plastic solid, and the stress o- at
y

which the matrix yields for the elastic-perfectly

plastic solid. In the limit of e/0 << I and 0/0 << 1,

oo and ow reduce to the same expression,y c

o -k* (- (6.13)
y c

Consider the special case T- = 0. Then

equations 6.11 and 6.1 give,

k k FT(!) tnp-3
y = (I + ) (;7 T---)2 tan2 S) -  (6.14)

Ty

Rigid-plastic, all [

S- - Elastic-plastic • Onset of yield

0'

I,

k. 0/0,o

1i, 0 0

0=05

0 1 2 3

,

FI. 8(b': Comparison of col lapse response for

rigid-perfectly plastic solid with that for

elastic-perfectly plastic solid. /C = (Ty/k) 2 = 

* = 2", = 0.001.

~B
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If we assume for mathematical convenience k--T

then equations 6.10 and 6.14 reduce to,

k*(6.15)

where k* S k (1 + (k 2 tan2 13), as before. This

value for (ci, # ) lies on the o versus # response for
y y

the rigid-perfectly plastic solid given by equation

6.6.

(b) Post Yield Response

After matrix yield, the elastic-perfectly composite

suffers both elastic and plastic straining in the kink

band. The plastic strain rate is normal to the yield

locus given by equation 6.1. A derivation of the

relevant equations is given in Appendix A. Here, we

describe only the results.

The pre and post yield response for the

elastic-perfectly plastic solid is compared in Fig. 8b

with the post buckling response for the rigid-perfectly

plastic solid. We note that the matrix yields at

#/7 1, where -y = k/G is the shear yield strain of the

matrix. The elastic-plastic response quickly

approaches the rigid-perfectly plastic result, so that

they are indistinguishable beyond */r = 2. WeY
conclude that the rigid-perfectly plastic constitutive

description is adequate for practical purposes.

FT a I
In the limit of Tw = 0, with -- =(: 2 the

post-yield elastic-perfectly plastic response coincides

with the rigid-perfectly plastic response. In the

IIL ° p.'
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limit of 0 = , material in the kink band suffers

simple shear with T = k, aT = 0. Again, the post yield

elastic-perfectly plastic response coincides with the

rigid-perfectly plastic response.

7. PROPAG&TIO4 OF A NIQOBU(LE BAND

In practice, fibre microbuckling initiates at a stress

raiser such as an imperfection or a hole in a sheet.

The microbuckle band propagates across the remaining

section of the structure. Fleck and co-workers (Soutis

and Fleck (1990), Soutis, Fleck and Smith (1990)) have

analysed the early stages of microbuckle propagation by

treating the microbuckle as a crack with a bridging

zone at its tip. This approach is reasonable if the

traction is negligible across the microbuckled band, at

a distance far behind the tip of the advancing

microbuckle.

Here, we calculate the stress ow required to
p

propagate a long microbuckle in steady state. In this

limit, the rubble strength of the microbuckled material

is not negligible. The geometry is shown in Fig. 9a.

We assume remote proportional loading where T- = eo-

and e is fixed. We shall use a simple energy argument

to calculate oa, and make use of the remote stress
p

versus remote displacement response of a microbuckled

band of infinite length. Chater and Hutchinson (1984)

used a similar method to calculate the pressure

required to propagate bulges and buckles in elastic

cylinders.

The predicted remote stress o versus

response of the infinite band is shown in Fig. 9b. We

i _ - .: " p' 9 fi,,, ,,
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assume the infinite band displays the rigid-perfectly

plastic characteristic, equation 6.6, for small #.

When a critical fibre rotation *1 is attained, the

tensile transverse strain in the band eT equals the

failure strain eTf (typically eTf = 1X) and the matrix

fails, see Fig. 9b. The band strength vaitshes with

continued fibre rotation # until eT reduces to zero at

# #2. Thereafter we imagine the fibres in the band

u Displacement

a,
P

,TOP*

I II1 microbuckle

t t t-' t t

(b) o.= -

matrix lock-up

fails

01 0

Fl. (a) Ceometry of a propagating microbuckle. (b)
Conjectured collapse response of a microbuckle.

. ~. .. ........
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contact each other and the band locks-up, with no

further straining of the band. Lock-up is based on the

idea that the composite resists compressive transverse

straining in a highly stiff manner. The condition

eT = 0 corresponds to zero volumetric strain in the

band since the fibres are considered to be

inextensional. Chaplin (1977) and Evans and Adler

(1978) also argue that fibre rotation stops when the

volumetric strain in the band vanishes; they base their

arguments on direct measurements of microbuckling.

Consider conservation of energy when the

semi-infinite microbuckle shown in Fig. 9a undergoes a

unit advance. For a deformation theory solid we get,

o vz + T' u=2 = o- d + f Tdu + Gc sec 0 (7.1)

where a is the fixed remote stress. Horizontal-p

displacement u and vertical displacment v are defined

in Fig. 9a. The first two terms on the right hand side

of equation 7.1 refer to the work done by microbuckling

when material is taken from a state = o to a state

= #2, as shown in Fig. 9b. The last term on the right

hand side of equation 7.1 represents the dissipation

due to delamination and damage in off-axis plies.

Equation 7.1 provides a necessary condition

for microbuckling: a detailed collapse mechanism at

the tip of the advancing microbuckle would provide the

sufficient condition.

We next calculate o0 from equation 7.1. The
P

matrix fails when eT = eTf at a fibre rotation #j,

eTf (7.2)

tan - sec
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Lock-up occurs when eT equals zero. This is achieved

at a fibre rotation 02, where by 4.9,

02 
= 2(f3 - T) (7.3)

By kinematics, the remote displacements u and v, which

form the work conjugates of T- and o respectively,P P

are,

u sin(i + *) - sin T

V = Cos T- cos( + 0) (7.4)
w

When * is small, these reduce to,

U

-2 + (7.5)

w
Equation 7.1 can be evaluated using equations 6.6,

7.2-7.5 and the assumption of proportional remote

loading Tr = e o to give,

k- = [(1-cos23 - * sin2p) + e(sin23 - *(l + cos23))]

x [* (1 + (-i)a tan2p) + c sec 13] (7.6)

where *1 is specified by equation 7.2.

The buckle propagation stress o is plottedp
against band inclination P3 in Fig. 10, by evaluating

equation 7.6. We note that o increases with

increasing Cc and decreasing Tr, as expected. A

critical angle of 1 exists for which o- is a minimum,
p

for any specified material parameters and loading ratio

e. Disappointingly, the predicted values of P3 are in

the range 450 - 75= which are larger than the values

100 -30 ° typically measured. This suggests that the

angle 1 may be set and locked-in at the initiation of

kink



267

propagation, by deformation patterns induced

elastically via initial misalignments, as proposed by

Budiansky (1983).

The kink band analysis does not provide us

with the value of the kink width w. Budiansky (1983)

has predicted w with reasonable success using an

elastic bending analysis. He finds for perfectly

brittle fibres (tensile failure strain = 0),

= 7 v 3 (7.7)

where d is the fibre diameter. This expression

predicts correctly w/d - 10 for material properties

typical of carbon fibre epoxy composites.

7.1 Ckse Study

Soutis and Fleck (1990) have examined recently the

O'10 Arrow f denotes minimum

3 0 0.05
10 O

102

I .0.1

10- T--- ---

00 30 60p

FigJQA. Effect of band angle 13 upon propagation stress

o/k. aTyA = 2. = 2 , Tf 0.01.

pp
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compressive failure of a unidirectional and

[+45°/02)3]s multidirectional carbon fibre epoxy

composite. They measured the following material

properties for the unidirectional material under remote

axial loading: 1 = 20° ,k = 60 MPa, ET/G = (aTy/k) 2 = 4,

ac = 1600 MPa. Equation 6.6 predicts T = 2.6° which is

consistent with the level of fibre misalignment

observed. The fibre rotation after microbuckling 02

was found to satisfy equation 7.3, supporting the

concept of lock-up. Soutis and Fleck were unable to

measure the buckle propagation stress o since unstable
p

buckle propagation occurred once the microbuckle was

initiated. This is consistent with the predicted value

o- = 13 MPa from equation 7.6 which is much less than
p
the measured buckling strength a = 1600 MPa.

Soutis and Fleck (1990) have also measured the

toughness Cc associated with splitting and delamination

in the [(±45/02)3] s  laminate. They measured

cc = 30 kJ/m2 from the compressive fracture load of

specimens containing central slits transverse to the

loading direction. This value for C together with anc
observed value for w = 6Opm, gives C /kw = 8.3, andc
ow = 2900 MPa via equation 7.6. This predicted value

p
for o is too high, as the multi-directional laminate

p
was observed to fail unstably at a stress 0c = 810 MPa.

We conclude that more detailed modelling of damage

development in the off-axis plies is required. This is

not surprising, since the measured toughness Cc
associated with delamination and splitting is more than

two orders of magnitude greater than the dissipation
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due to microbuckling per unit area advance of the

microbuckle.

8. CONICLUDING REMARIKS

The elastic and plastic kinking analyses of

microbuckling is able to account for some but not all

of the experimental observations. Fibre bending must

be treated explicitly in order to predict the width w

of the microbuckle band and the band inclination 13.

There remains a paucity of experimental

evidence on the underlaying features of microbuckling.

The authors are unaware of any systematic studies which

examine the influences of fibre misalignment upon

microbuckling strength. It is difficult to distinguish

experimentally between elastic and plastic

microbuckling of polymer matrix composites, as matrix

yield stress usually scales linearly with matrix

stiffness. Data on the shape of the yield locus for

composites remain scant. It seems that few systematic

experimental studies have been conducted of the elastic

microbuckling of fibre composites with elastomeric

matrices.

The buckle propagation analysis suggests that

only a small compressive stress is required in order to

propagate an existing microbuckle. No measurements of

the microbuckle propagation stress were found from the

literature.

This work was supported in part by DARPA

University Research Initiative (Subagreement P.O. NO.



270

VB38639-0 with the University of California, Santa

Barbara, ONR Prime Contract 00014-86-K-0753), and by

the Division of Applied Sciences, Harvard University.

The authors are also grateful for funding from the

Procurement of Executive of the Ministry of Defence,

under a joint SERC/MOD contract.

APPE1WIX A: IERIVATION OF POST-YILD ELASTIC-PRFECILY

PLASTIC RISPOS

The post-yield elastic-perfectly plastic response is

given in rate form as follows. We shall use the

superscripts e and p to denote elastic and plastic,

respectively. The strain rate in the kink band is,

e + P' eT=; +  (A1

-e T e -C (T
where, ,e = ?. eT ET (A2)

in accordance with equations 5.1, and

;P = =,i- -(
k 0 Ty k

by equations 6.2; X is a positive number for active

plastic straining. Assume proportional remote loading

with T- = eoc. We combine equations Al-A3, with the

yield condition 6.1 and the kinematic relations 4.8, to

obtain I and the stress rates in the kink band T and

A [An A]
= A 21 A22J
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AT a Tk2  (T 2 G

k CTY karU k E

AC' TT k k 2a T

Ai = _ I -+tan((2-ta-3)

k kT

Ty
6T uk__2COS(;j+0) T

A12 k 3--- +- sin(#+#)]e cosp sec(P-#-#)

A2 2 = [ a)2 2-- cos(;i+#)-sin(F+#)]e cos3 sec(3- --)

_ T

Equations A4 simplify in an obvious manner when we

assume small (;j+#), and FT/G = (OTy/k) 2 . To proceed,

we differentiate the equilibrium equation 4,16 wfth

respect to time, and substitute for T, UT using A4, and

for b using 4.10. This results in a 1st order

differential equation for d(oo/G)/df of the type given

in 5.6, but with a new expression for h,. Similarly,

we obtain Ist order differential equations for

d(T/G)/dO, d(T/G)/d# and for dp/dO. The resulting

system of 1st order differential equations, analogous

to equations 5.6, is integrated numerically using a

Runge-Kutta routine. The starting values are given by

the onset of yield condition described in part (a) of

section 6.2. Results are shown in Fig. 8b.
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A Critical Evaluation for a Class
of Micro-Mechanics Models*

Richard M. Christensen

University of California
Lawrence Livermore National Laboratory

Livermore, California

ABSTRACT

New results are derived for the effective properties of composite
materials composed of a continuous matrix phase containing a highly
concentrated suspension of rigid spherical inclusions. The result
ing analytical forms from several different theoretical micro-
mechanics models are found to vary widely and they are assessed with
respect to physical significance.

SUMMARY

Micro-mechanical analyses are required to predict the effective properties and

failure characteristics of composite materials. The term micro-mechanics

implies the use of a model which accounts for explicit interaction at the

level of a continuous matrix phase and one or more inclusion phases. There

are many theoretical micro-mechanical models which have been developed and

applied to predict the effective elastic properties of composite materials,

and these will be considered here. Furthermore there have been comparisons of

such model predictions with data but this has primarily been done in the range

where all of the more reasonable models are within the band of the experimental

error and only models containing known errors or the meaningless rule of

mixtures show large deviations. Few if any critical evaluations have been

offered. The present work is intended to provide a critical evaluation of

several of the prominent theoretical micro-mechanics models and this summary

is excerpted from a recent work I with this objective. The many micro-

mechanics models that have been developed for predicting the effective,

elastic properties of composite materials admit different forms depending upon

*Work performed under the auspices of the U.S. Department of Energy by the
Lawrence Livermore National Laboratory under contract number W-7405-ENG-48.
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whether the case of particulate reinforcement or fiber reinforcement is being

considered. Models which have a theoretical basis in either case include the

following:

Differential Method

Composite Spheres (Cylinders) Model

Self Consistent Method

Generalized Self Consistent Method
(Three Phase Model)

Mori-Tanaka Method

Although there are many other micro-mechanics models they usually are either

of an essentially numerical nature involving series or finite element

solutions, or they are of an empirical nature, or finally they involve grossly

oversimplifying assumptions. The primary references to the main theoretical

models are as follows. The Differential Method has a long and interesting

history, but it was most effectively developed and used by Roscoe.2 The

Composite Spheres Model is due to Hashin.3 The Self Consistent Method is
45credited to Budiansky and Hill. 5  The Generalized Self Consistent Method

was formalized by Christensen and Lo6 and referred to as the Three Phase
Model by them. Finally, the Mori-Tanaka method has had many contributors, but

the most recent and simplest derivation of it has been given by Benveniste.7

To proceed further it is necessary to decide whether to follow the particulate

or fiber reinforced case. The present work will focus primarily upon the

particulate case since it is of interest in its own right, and the conclusions

found from it project over to the fiber reinforced case. In the area of

particulate reinforced composite materials explicit attention will be given to

the case of spherical inclusions in a continuous matrix phase. It is with

this spherical Inclusion case that there exist the most relevant and explicit

theoretical forms, as well as the greatest liklihood of finding critical data

against which to test the various theories. The case of spherical inclusions

can be sub-divided into two major classes

i) Single Size Spherical Inclusions

ii) Polydisperse (Size) Spherical Inclusions

(*i lIi I / 1•i l



277

The case of single size spherical inclusions have been extensively studied by

Frankel and Acrivos8 in the form of highly concentrated suspensions of rigid

inclusions, in the fluids context, and by Chen and Acrivos g under deformable

inclusion conditions in the elastic context. The present work covers the

polydisperse case of spherical particle suspensions with isotropic properties.

Within the case of polydisperse suspensions of spherical inclusions, the

limiting case is specified by those suspensions which permit full packing with

c-1, where c is the volume fraction of inclusions. Models which permit c-i

are of interest for at least three reasons. Micro-mechanics models which

permit c-l are particularly amenable to theoretical treatment and in fact

are widely used in theoretical studies. Secondly, these micro-mechanics

models giving c-1 are appropriate for use in describing practical, poly-

disperse suspensions involving a gradation of sizes of particles. Thirdly,

models allowing c-l can serve as reasonable approximations to the mono-

disperse case so long as the concentration is not too large. With the

restriction that the models permit the full packing of inclusions and for

purposes of rigorous comparison and evaluation, two of the previously mentioned

micro-mechanics models must be excluded from consideration. These are the

Composite Spheres Model and the Self Consistent Method. The Composite Spheres

Model does not give a solution for the effective shear modulus but rather only

for the bulk modulus. It does yield information on bounds for the shear

modulus but that is not of relevance here where concern is with explicit

predictions rather than bounds. Also, the shear deformation property is the

primary concern here for reason to be given next. The Self Consistent Method

when applied to multi-phase media does not always cover the full range of

volume fraction up to c-l. This is true particularly when there is a large

mis-match in properties of the two phases, which is the case of primary

interest here, for reasons which also will be outlined in the following

discussion. Thus, the micro-mechanics models which conform with the

requirements stated here are:

Differential Method

Generalized Self Consistent Method

Mori-Tanaka Method

i97
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It is these models which wiii be extensively studied, compared and evaluated

in the following work.

Most of the comparisons will concern the shear modulus rather than the

corresponding volumetric property. This is because the shear property is much

more difficult than the volumetric property to analyse. In the more physically

based models the volumetric property is governed by a scalor potential whereas

the shear property involves vector potentials. Accordingly it is much easier

to bring spurious results into a shear modulus micro-mechanics model than it

is for the volumetric property.

It is important to search for and examine the range of behavior where the

differences between the various micro-mechanics models are the greatest. As

already briefly mentioned, most evaluations involve comparisons of models with

data in low volume fraction ranges where the differences between them are not

great. To see the greatest differences between the models it is necessary to

go to conditions involving concentrated suspensions. Furthermore, the greatest

differences between model predictions occur for suspensions that have phases

with the greatest mis-match in properties between the matrix and inclusions.

The work here therefore focuses upon the suspensions involving perfectly rigid

spherical particles under highly concentrated conditions in a continuous matrix

phase. This case also will provide the most discrminating means of assessing

the models relative to experimental data.

Brief mention should be made of the relationship of direct model predictions

for properties with corresponding information upon values of upper and lower

bounds for the properties. Bounds have value in several different situations.

Certainly bounds are of interest when it is not possible to obtain a direct

micro-mechanical solution for the effective property of interest. Also, bounds

are of use in testing the direct predictions from models. If predictions from

a particular model violate relevant bounds then the model is useless. If, on

the other hand, the predicitons from a particular model satisfy the relevant

bounds, then essentially no information is gained from the bounds relative to

the model. That is the situation in operation here. No further reference

need be made to bounds, other than to simply observe that all results given

and interpreted here are consistent wiLh all relevant bounds information.
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The predictions from the various models are compared under high concentration

conditions. This is done through the derivation of asymptotic forms

appropriate in the limiting case of high concentration of the rigid spherical

inclusion phase. The leading terms in the expansions give the dominant effect

under high concentration conditions. The details of these lengthy derivations

are given by Christensen and the end results of the derivations will be

given here. The dominant terms for the effective shear modulus VL obtained

for the Differential Method, the Generalized Self Consistent Method and the

Mori-Tanaka Method are given in Table I where pm is the shear modulus of

the matrix phase and c is the volume concentration of the spherical particles.

Table 1. Effective Shear Modulus for a High Concentration

Rigid Spherical Inclusion Suspension

Compressible Incompressible

Matrix Matrix

F(v )
Differential Method _ n J__ 1

'm (1-c)
2  Pm (I-c)

512

Generalized Self IL- f(V-m 27

Consistent Method )M (1-c) Pm 16(1-c)
3

Mori-Tanaka Method -- -f(Vm) ML 5.
m (-c) Pm 2(1-c)

All results in Table 1 represent the high concentration leading terms of the

corresponding expansions except the result shown for the Differential Method

with the incompressible matrix phase which is an exact result valid at all

concentrations. The symbols) F(vm ) and f(vm) and f(vm ) in Table 1 represent

functions of the Poisson's ratio, v., of the matrix phase. These forms are

known from the solutions given in Ref. I. For example for vm - 1/5 then F(vM )

- 1, f(v m ) - 2.38 and f(v m) - 2.It Is seen from Table I that the three

micro-mechanics models give drastically different predictions of behavior under

4 ...,.
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high concentration conditions. In the Incompressible matrix case the exponent

of the dominant (1-c) term ranges from -1 to -3 causing orders of magnitude

differences in predictions under very concentrated conditions. The only cases

in Table 1 where the different models give the same order of the (1-c) term is

for the Generalized Self Consistent Method and the Morl-Tanaka Method in the

Compressible Matrix case. However, even in this case the values of the two

functions of Poisson's ratio f(vm) and f(vm) in Table 1 can be very different.

This difference is shown in Table 2.

Table 2. Compressible Case, High Concentration

U_ . constant

im 0-c)

Vm-O vem14 vl=/3 Vm-.45 Vm-l/2

Generalized Self 2.05 2.54 3 5.92

Consistent Method
Constant

Mori-Tanaka Method 1.87 2.05 2.14 2.36 512
Constant

The fact the constant becomes unbounded for the Generalized Self Consistent

Method as vm-l)2 is simply a reflection of the fact that in the incompressible

case the leading term in the expansion is of higher order than that of 11(/-c)

and the problem must be reformulated to get the 11(/-c) 3 dependence shown in

Table 1.

The results shown in Tables I and 2 reveal the fundamental differences between

the three micro-mechanics models. In Ref. I a detailed comparison is given of

the three micro-mechanics models with experimental data. The results are more

complex than can be simply stated here, because the full theoretical forms of

the models must be used rather than just the asymptotic results shown in Table

1. The comparison with experimental data favors the Generalized Self

Consistent Method rather than the other two models; see Ref. I for the

conditions and limitations of the evaluation. The main qualification of these

results is that of the restriction to very concentrated conditions for the
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suspension. Perhaps it could be argued that this limiting case is too severe

and under "normal conditions" all the micro-mechanics models discussed here

give reasonable predictions. The difficulty, however, is in defining the term

normal conditions since there is no clear dividing line. In this sense then a

model that gives reasonable behavior in some cases and unreasonable behavior

in other cases is no better than an empirical model. In any case, all models

recover dilute behavior adequately, and the major technical problem is to

properly model the other extreme of behavior, the concentrated suspension

case, as has been considered here.
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Abstract

This paper describes a part of a continuing program in
experimental verification of model predictions of the overall
inelastic behavior of fibrous metal matrix composites.
Measurements of initial and subsequent yield surfaces, and of
plastic strains were performed on thin-walled B/Al tubes with
unidirectional axial reinforcement, under torsion and internal
pressure that was applied along a complex incremental path.
The results were interpreted with three different models, the
periodic hexagonal array (PHA) model, the bimodal plasticity
theory, and a modified Mori-Tanaka scheme. The reliability
of the predictions varies significantly, particularly where
plastic strains are concerned. Only the PHA model appears to
be of value in this regard, but the shape and position of overall
yield surfaces was well predicted even by the
matrix-dominated mode of the bimodal theory.

1. Introduction

Numerous analytical models have been proposed for
prediction of the inelastic response of fibrous composites, an
extensive bibliography appears in a recent review by Dvorak
(1990). In contrast, experimental verification of such models,
and the experimental work itself, have attracted much less
attention. The present paper is a part of a program where
such questions are addressed, both in terms of physical
experiments, model development, and evaluation of the
reliability of model predictions by comparison with
experimental measurements of yield surfaces and plastic
strains.

The experimental technique and results for incremental
loading along a complex loading path are described in §2.
Section 3 presents certain general relations which govern

immm m lmmmm m m 
m m mmm m

m
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motion of subsequent yield surfaces during loading, and
evaluation of plastic strains in the inelastic phases. Section 4
reviews some elements of the various models used in
subsequent simulations of the experiments in §5. Some
conclusions are noted in §6. In general, good predictions of
overall yield surfaces and of their shape and position during
plastic loading can be derived from several models. However,
evaluation of plastic strains is much more difficult and less
reliable even if performed with refined modeling techniques.

2. Experimental Results

The results described herein were obtained as a part of
a continuing program which was first discussed by Dvorak et
al. (1988). The work was performed on thin-walled tubular
specimens made of a unidirectionally reinforced 6061-Al/B
composite, with fibers aligned parallel to the axis of the tube.
Figure 1 shows the specimen dimensions, instrumentation, and
end attachments. The specimen tubes were fabricated by
diffusion bonding of monolayers which were wrapped around a
cylindrical madrel and then subjected to external pressure of

12.5mm

T -end attachment
50m (diameter = 76 mm(

tubular specimen
(diameter = 41 5mm)
(wall thick. = 1 3mm,

100mm NOW Ab 45' rosette
strain gage

circumferential

strain gage

adhesive bonding

materials.
50mm tube B-A. c, = C -15

1 grip: steel

12.5mm

Fig. 1 Dimensions and instrumentation of
composite tube specimen.
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30 MPa at 500° C. In the finished form, the tube wall
contained seven layers of fiber, the fiber volume fraction was
cf = 0.45. The specimens were annealed at 400'C for two
hours, cooled at 10°C/hr to 260°C and then air cooled.

Specimen instrumentation was designed for
measurement and recording of axial, hoop and longitudinal
shear strains in the tube wall under incremental loading.
Typical resolution was 1.0x 10-6. Load was applied by a MTS
closed-loop servo-hydraulic machine in the stress controlled
mode. Independent components of axial force, torque, and
internal pressure were combined to create various incremental
loading paths. The machine was controlled by an IBM PC; the
accuracy of load application, in terms of the average stress in
the specimen wall was 0.1 MPa; the loading rate in all three
directions was about 4.2 MPa/min. All tests were performed
at room temperature. Additional information may be found in
op. cit.

The purpose of the experiments was to establish overall
yield surfaces and to measure plastic strain magnitudes for the
selected loading sequences. The yield surfaces were
constructed as loci of experimentally detected yield points on
stress-strain curves found during excursions from the elastic
region. As in op. cit., the yield points were defined at the
onset of deviation from linearity, and they were evaluated by
back-extrapolation from the initial inelastic part of the
stress-strain curve.

Figure 2 shows the path in the overall stress space
which was selected for the present experimental work, and for
the subsequent comparison of the results with several model
predictions, as discussed in the sequel. The path was chosen in
the a210 22 - stress plane, where a22 denotes the normal stress
transverse to the fiber, and a'21 is the longitudinal shear stress.

The 022 corresponds to application of internal pressure. No

axial force was applied to compensate for the axial normal
stress caused by the internal pressure, hence such stress
coexists with 022 and the scale on the horizontal stress axis
in Fig. 2 was adjusted to reflect the resulting rotation of the
stress plane actually employed in the measurements.

The path starts at point 1, and follows the sequence
indicated by the arrows to point 11. The initial yield surface I
was found by loading excursions from point 1 to the
experimental yield points indicated. Subsequent yield surfaces
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II to IV were found in a similar manner at points 4, 7, and 11.
Note that points 6 and 11 lie outside their respective yield
surfaces, this "piercing" phenomenon is explained below. The
individual yield surfaces seen in Fig. 2 correspond to the
matrix-dominated deformation mode in fibrous media (Dvorak
and Bahei-El-Din 1987). The relevant equations appear next.

3. Yield surfaces and plastic strains

The origin and motion of the overall yield surfaces of
the fibrous material is related to the local stress field in the
phases, and to the harderiing characteristics of the matrix
material which alone is responsible for the inelastic
deformation. The local fields may be thought of in terms of
piecewise uniform distributions, such as those that may be
evaluated by the finite element method. For this purpose, a
representative volume of the composite material may be
subdivided into N = Nf + Nm subelements where the stress
field is known in terms of some constant values. Under a

uniform overall stress o the local field is

rk = Brk , k = 1,2, ... N; (1)

where r = f, m, and Brk is the stress concentration factor of

subelement k. This concentration factor must be evaluated for
each subelement from the solution of a boundary value
problem for the representative volume of the composite
microstructure under consideration, or it may be estimated by
an approximate method.

The results found by Dvorak et al. (1988) indicate that
the annealed 6061 aluminum matrix hardens kinematically.
The equation of the matrix yield surface has the form

gm(_. - .) = 0 (2)

and the evolution of the back stress vector ?m is reasonably

well described by the Phillips (1972) rule which stipulates that

Ij
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dam = d m (3)

From the above one concludes that for each matrix
subelement there is a yield surface in the overall stress space
given by the equation

k (- k) - [ (g-m k) A = 0; k = 1,2,...N . (4)

where am denotes the position of the current center in the local

stress space, and ?k denotes the position of the corresponding

surface in the overall stress space. The projections of the local
surfaces into the overall stress space may be referred to as
branches of the overall yield surface. Also, the following
relation exists between the local and overall stress vectors (Hill
1967):

kmk -? - Bk( " (5)

With regard to the Phillips hardening rule for the
matrix (3), the motion of the loaded branches of the overall
yield surface is then described as

dk = d- (6)

The branches for subelements which currently undergo elastic
deformation also experience a translation, due to the stress
redistribution during plastic straining (Dvorak et al. 1988).
Equation (6) suggests that regardless of the actual form of the
local yield function (2), the loaded branches of the overall
surface translate by an amount equal to the overall stress
increment. As plastic yielding spreads through the entire
matrix volume, the said translation affects all branches of the
overall surface.

Evaluation of overall plastic strains in a composite
material must also proceed from local constitutive equations
for the matrix material. The local plastic strain is computed
from the familiar formula (Ziegler 1959):
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dEj = (1 + H/3G) "I nkldEkl nij (7)

where dEij is the total strain increment, nij is the direction of
the outward normal to the yield surface at the current stress
point, G is the elastic shear modulus of the matrix phase, and
H = H(oij) is its instantaneous plastic tangent modulus. This

modulus was evaluated here from the two-surface theory
proposed by Dafalias and Popov (1976). Their approach
introduces a bounding surface, which is an isotropic expansion
of the initial yield surface. The two surfaces are coaxial in the
undeformed state. During deformation, the yield surface
follows a given hardening rule, such as that indicated by (3),
while the bounding surface undergoes the translation in which
the center of this surface moves by the amoupt

H dcmnnmn
dlj= deiij- (1 A&) . (8)

H /kinki

This is illustrated in Fig. 3a which also defines the terms in

(8). Note that at points s and s the two surfaces have parallel
outward normals. In an uniaxial test, the two-surface
approach leads to the scheme indicated in Fig. 3b. If o is the

distance between s and s , then the instantaneous plastic
tangent modulus H follows from the formula

H = H0 + h 6/(in-) (9)

where bin is the value of 6 at the onset of yielding, H0 is the

asymptotic value of H, and h is a material parameter. Note
that application of this model to a specific material requires
evaluation of the parameters HO, h, and the size of the
bounding surface. After rearrangement, the above equations
lead to the following formula for evaluation of the
instantaneous stiffness of the matrix material:

2G
L ijkl - nijnkl (10)1+ H/3G
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4. Composite material models

4.1 Bimodal plasticity theory

In their 1987 paper, Dvorak and Bahei-El-Din
suggested that fibrous composites reinforced by aligned elastic
fibers may exhibit two distinct deformation modes in response
to plastic straining in the matrix phase. In the fiber mode, the
composite behaves as a heterogeneous material where both
fiber and matrix carry the applied load. The self-consistent,
Mori-Tanaka, or other such models may be used to describe
overall behavior in this mode. In contrast, the matrix
dominated mode transfers all loads to the matrix and employs
the fiber to restrict plastic straining in the matrix to simple
shear deformation on planes that are parallel to the fiber axis.
Each of the two modes is activated by a different state of
applied stress, i. e., each has its own segment of the composite
yield surface in the overall stress space. The matrix mode
surface is independent of phase moduli, but the fiber mode
surface depends on these moduli, hence the two modes are
activated by different stress states in different composite
systems. The fiber mode is always present, but the matrix
mode is not. In general, existence of the matrix mode is
favored in systems where the fiber longitudinal shear modulus
is large compared to the matrix shear modulus, e.g., in the
present B/Al system, but also in SiC/Ti and SiC/TiAl
systems. This condition is seldom met in composites reinforced
by graphite fibers, hence only the fiber mode may exist in the
Gr/Al and similar systems.

The loading path of Fig. 2 activates only the matrix
dominated mode in the B/ Al composite used in the
experiments. The corresponding yield surface was derived by
Dvorak and Bahei-El-Din (1987) as

2a() =
0  2 1 2 1 =0 for Iq- 1

(11)

b( 2 2 1 = 0 for jql >1
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where ro is the composite yield stress in longitudinal shear, and

q = - a2 l)/(o2 2 - a22).

This is a straight cylinder with oval cross-section and
generators parallel to the o,,, axis, as shown in Fig. 4 in the

initial state, ai = 0. Figure 2 contains oblique sections of this

cylinder, with the yield stress 70 adjusted to fit the

experimental yield points at each of the displayed surfaces. As
observed by Dvorak et al., (1988), the matrix hardening has a
small isotropic component, possibly caused by strain and age
hardening, which affects the size of the experimentally detected
overall surface.

The model of the matrix-dominated mode of plastic
deformation also indicates a method for evaluation of plastic
strains; this has been outlined in the 1987 paper.

X3

3 - L mX2

Xl

2

fb q =121/0"22

? Iql<l "."'.X Iql<l

//" T % 0722/ To

-1

-2

Fig. 4 Transverse cross section of the initial
yield surface of the matrix-dominated
mode.
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4.2 The Periodic Hexagonal Array model

Dvorak and Teply (1985) and Teply and Dvorak (1988)
developed this model in an attempt to obtain better estimates
of the local fields, and bounds on instantaneous overall
properties of elastic-plastic composite materials. The
microstructural geometry is represented by a periodic
distribution of the fibers in a hexagonal array, Fig. 5. The
array is divided into two sets of unit cells, as indicated by the
shaded and unshaded triangles in Fig. 5. Under properly
prescribed periodic boundary conditions, the two sets of unit
cells have related internal fields when the material is subjected
to remotely applied uniform overall stresses or strains.
Accordingly, only one unit cell from either set needs to bc
analyzed.

The actual analysis is performed by the finite element
method. The unit cell is subdivided into a selected number of
subelements, element material properties are prescribed as
suggested by (10), and solutions are generated as the cell is
subjected to prescribed incremental loading. Figure 6 indicates
two possible subdivisions of the unit cell; of course the fine
mesh is preferred when details of the local fields are of interest.
A separate subroutine has been developed for the coarse mesh
(Teply 1984), while the fine mesh has been implemented via
the ABAQUS program.

4.3 The Mori-Tanaka method

This approximate method for evaluation of estimates of
overall elastic properties of matrix-based heterogeneous media
was originally proposed by Mori and Tanaka (1973), and more
recently reformulated in a simpler form by Benveniste (1987).
The essential assumption of the method is that the local field
in each inclusion may be replaced by the field which exists
when this inclusion resides in an large volume of matrix that is
subjected to the average matrix stress or strain at infinity. In
a recent paper, Lagoudas, Gavazzi and Nigam (1990) adapted
this method to elastic-plastic systems. At each loading step,
their approach utilizes the Eshelby solution of the inclusion
problem in a homogeneous anisotropic matrix. Then, the
stress and strain distributions found in the phases are replaced
by their phase volume averages. These averages serve to
evaluate instantaneous matrix properties from the prescribed
constitutive law of the matrix, in the form suggested by (10).

w -- nil
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Fig. 5 Transverse cross section and unit cell of
the Periodic Hexagonal Array model.9.V, X2

x2

i~lll i



295

XF

X 13 X2

Fig. 6 Coarse and refined finite element meshes.
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5. interpretation of experimental data

We now proceed to simulate the yield surfaces and
plastic strains measured along the path indicated in Fig. 2 by
the three models described in §4. With reference to the figure,
note that the initial part of the loading path, between points 0,
2, and 3 was used to fix the parameters in (10). This was done
empirically, albeit with prior knowledge of similar parameters
for the neat matrix. In particular, the initial matrix yield
stress in simple tension was found to be equal to 23.64 MPa,
the radius of the bounding surface in the same direction was
evaluated as 69.6 MPa. The material parameters in (9) were
selected as HO = 1100 MPa and h = 80,000 MPa.

Figure 7 presents the initial yield surface I from Fig.
2,with the experimer sally detected yield points, together with
a duster of subelement branches of the overall yield surface
derived from the fine mesh in Fig. 6, according to (4) at

?k = 0. Some of these branches fall within the MDM surface

of the bimodal model, this reflects the presence of
microyielding prior to a definite deviation from linearity at the
yield point. Figure 8 shows the cluster after loading from the
origin to point 2 of the loading path in Fig. 2. Each loaded
branch translates according to(6). Since all branches pass
through the loading point 2, all matrix subelements have
yielded at this point. The outer normals to the innermost
branches at the loading point form a cone of normals which
must contain the overall plastic strain increment vector (Hill
1967). The directions of this vector found in experiments and
in the PHA simulation are shown to lie within this cone.

Similar yield surface configurations were found at other
loading points. Among those we display in Fig. 8 the data at
point 6. Again, all elements yield, the branches form a
hinge,and the cone of normals contains the experimental and
numerical (PHA) evaluations of the plastic strain increment
vector directions. Those are seen to lie in close proximity, but
not in the direction of the normal to the MDM surface found
from the bimodal theory fit to the experimentally measured
yield points.
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Piercing of the latter surface by the loading vector at
point 6 is seen to be caused during detection of the
experimental yield points. As the yield points are found after
loading to point 6, the cluster of subelement surfaces undergoes
a substantial rearrangement during the several loading
excursions, such that the point 6 no longer lies on the final
overall yield surface.

To indicate the differences in the direction of the plastic
strain increment vectors that were measured experimentally
and predicted by the PHA and bimodal models, we record here
the respective angles, measured in degrees in the
anti-clockwise direction from the u22 axis:

Directions of the plastic strain increment vector

Loading Experimental PHA model Bimodal

point theory

2 3.21 5.55 8.17
3 175.94 174.21 171.83
5 63.43 83.03 51.34
6 83.02 72.33 51.34
8 220.58 209.49 215.00
11 244.33 253.17 NA

This suggests that both methods approximate the
actual plastic strain direction with similar accuracy. Of
course, it is more meaningful to compare the actual plastic
strain magnitudes. This is done in Fig. 10 which shows the

normal plastic strains C32 as a function of the applied overall

stress u22. Also in Fig. 11, which presents the same

comparison for the longitudinal shear components.
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The normal plastic strains appear to be in reasonableagreement UP to Point 5. There is a significant differencebetween the Mori-Tanaka and bimodal theory predictions andthe experimentaly measuredi Plastic strains during loadingbetween points 5 and 6 and thereafter. The PHA modelPredictions, while not in Perfect agreement, appear to benoticeably closer to the measured strains.

B-Al, c f 0.45 X3
120

Path 0 -11 2X
00

60

0

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18

Plastic Normal Strain, £EP (1-2)

Fig. 10 Normal stress - plastic normal strain,
0'2 -C22 , response for loading path 0-11.
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The longitudinal shear plastic strain comparisons in
Fig. 11 show these differences to be even more pronounced.
The Mori-Tanaka model deviates most significantly from the
experiments, somewhat lesser but still large deviations are
shown by the bimodal model, and even the PHA predictions
are quite different from the experimental data. Note that most
of these differences occurred during loading from point 5 to
point 6.
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Fig. 11 Shear stress - plastic shear strain,

ur21-2e 2 j, response for loading path 0-11.
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A final comparison, in Fig. 12, shows the plastic strain
path followed by the actual B/Al composite material and by
the respective models during the entire loading program. Here,
the PHA model comes relatively close to the experimental
data, whereas both the Mori-Tanaka and bimodal predictions
are very far away.
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6. Condluions

The results suggest that heterogeneous media posses a
number of yield surfaces both initially and at subsequent
loading points. Each point of the inelastic phase or phases
may be associated with a branch of the composite yield surface
in the overall space. These branches form a cluster of yield
surfaces, the internal envelope of this duster delineates the
purely elastic region devoid of any inelastic deformation. In
contrast, the experimentally detected surface which connects
the yield points that signify a definite deviation from linearity
on observed stress-strain diagrams in various loading
directions, is actually a locus of vertices formed in the above
cluster by the loading excursions. As suggested by Dvorak et
al, (1988), the experimental surface should be regarded as a
penetration envelope of the rearranged cluster of subelement
surfaces. This serves to emphasize the fact that the normality
rule applies only within a cone of normals, and not with
respect to the surface drawn through the vertices.

It is remarkable that the initial and subsequent
experimental surfaces are so well fitted by the bimodal model,
and specifically in the present case by the matrix-dominated
surface of Fig. 4. Also, it is surprising that the rigid-body
translation according to (6), which actually applies only to the
currently loaded branches of the duster, is exhibited by the
entire experimental surface. In any event, it appears that the
bimodal model, in conjunction with (6) for a matrix that
follows the Phillips hardening law (3), is rather useful in
evaluation of subsequent yield surfaces along a general loading
path in the overall stress space. Our related work shows that
equally good predictions are obtained from the PHA model,
albeit with much greater effort.

Apart from the kinematic hardening which clearly
dominates overall behavior, there are isotropic hardening
components. In part, they are probably caused by age and
strain hardening. However, numerical simulation of certain
experimental loading sequences with the PHA model has
revealed that overall isotropic hardening may take place in the
PHA model material even if the matrix hardens only
kinematically, as demanded by (3). At the present time,
reliable modeling of the isotropic effects appears to be beyond
reach, and the effects themselves may not be very significant.
The same applies to time-dependent effects at the loading rate
employed herein. However, significant rate effects have been
detected in the present system at very low rates.
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Evaluation of plastic strains appears to be the most
difficult goal to reach in modeling. Both the Mori-Tanaka and
bimodal models give unreliable predictions. This is no doubt
caused by the reliance of these models on normality of the
plastic strain increment vector to model approximations of a
single current yield surface. The experiments and their
simulations show that normality holds within the cone of
normals, but not with respect to either the experimentally
detected surface, or to its approximations. The PHA model
appears to be more reliable in this regard, but it is also
susceptible to significant deviations from measured plastic
strains. Clearly, the problem is due, in part, to the unexact
nature of plastic strains predictions in the matrix material; tins
is inherent in all available models, including the
Dafalias-Popov scheme used herein.
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Abstract
The effects of a superposed hydrostatic stress on the deformation and fail-
ure behavior of whisker reinforced metal-matrix composites are analyzed
numerically. The applied loading path consists of the imposition of a hy-
drostatic stress followed by tension along the fiber axis. Matrix cavitation
is the sole failure mechanism analyzed and an elastic-viscoplastic material
model is used that accounts for ductile fracture by the nucleation and sub-
sequent growth of voids to coalescence. The effect of the distribution of the
whiskers on failure is illustrated. A superposed hydrostatic stress is found
to have a much greater effect on ductility when the whiskers are clustered
than when they are uniformly distributed in the matrix. The predicted
variations in ductility for tensile and compressive superposed hydrostatic
stress, and the presence of zones which show highly localized strains, are in
qualitative agreement with available experimental results.

Introduction
Whisker-reinforced ductile matrix composites represent a broad class of ad-
vanced structural materials which often possess excellent specific strength
and stiffness values. The primary disadvantage of many particle-reinforced
materials is that they exhibit low ductility and poor fracture toughness.
In order to improve these macroscopic characteristics, it is essential to de-
velop an understanding of the deformation mechanisms on the local or
micro-level. A survey of published experimental work indicates that duc-
tile failure in the matrix by the nucleation, growth and coalescence of cav-
ities is a dominant failure mode in some composite materials with strongly
bonded interfaces [McDanels, 1984; You e al., 1987; Christman et al.,
1989]. Llorca et al, [1990] have carried out a parametric numerical study
of the effects of matrix porosity on deformation and failure behavior using
a phenomenological porous-plastic constitutive relation to characterize the
matrix material.

k.VT"
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It has long been appreciated that stress triaxiality plays an impor-
tant role in ductile failure by void nucleation, growth and coalescence. Re-
cent finite element simulations have shown that significant stress triaxiality
develops in a whisker reinforced composite matrix as a consequence of con-
strained deformation, Christman et al. [1989]. For the particular case of
metals reinforced by whiskers that are oriented in the direction of tensile
loading, tensile hydrostatic stresses develop at fiber ends while compressive
hydrostatic stresses are predicted for the matrix material located in the
regions between the ends of the fibers. The tensile hydrostatic stresses give
rise to an apparent increase in strength. It has also been shown, Christman,
Needleman and Suresh, [1989] and Tvergaard [1990], that particle distri-
bution plays an important role in the development of local field quantities,
in particular on the development of stress triaxiality.

Here, the framework in Christman, Needleman and Suresh [1989]
and Llorca et al. [19901 is used to investigate the effect of superposed hy-
drostatic stress on composite deformation and failure. The applied loading
path consists of the imposition of a hydrostatic stress (either tension or
compression) followed by uniaxial tension.

Problem Formulation
The formulation of the boundary value problem follows that in Christman,
Needleman and Suresh [1989] and Llorca et al. [1990], where further details
and further references can be found. A convected coordinate Lagrangian
formulation of the field equations is employed with the initial unstressed
state taken as a reference.

All field quantities are considered to be functions of convected coor-
dinates, y, which serve as particle labels, and time, t. Attention is confined
to quasi-static deformations and, with body forces neglected, the rate form
of the principal of virtual work is written as

Atf [f'i6E'j + T~ 6Ukj] dV =

= AtjTis !~ujdS - [ j T'j6E 3 dV - Ls T'6ui dS).- (1)

Here, 'j are the contravariant components of the Kirchhoff stress (T = J ,
where o is the Cauchy stress and J is the ratio of current to reference volume
of a material element) on the deformed convected coordinate net. The
quantities V and S are the volume and surface, respectively, of the body in
the reference configuration and (*) = 0()/t at fixed yi. The second term
on the right hand side represents an equilibrium correction term that is
used in the numerical procedure to reduce drift from the equilibrium path
due to the finite time step.

The nominal traction components, T, and the Lagrangian strain
components, Eij, are given by
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= (ri + Tkullk)vj (2)

Ej= (uiJ + uj,, + u$ukJ) (3)

where v is the surface normal in the reference configuration, uj are the
components of the displacement vector on base vectors in the reference
configuration, and ( ),, denotes covariant differentiation in the reference
frame.

The composite material is idealized in terms of a periodic array of
identical cells. In some calculations, an axisymmetric cylindrical cell is used
that can be regarded as an approximation to a three dimensional array of
hexagonal cylinders [Tvergaard, 1982]. In other calculations, in order to
investigate clustering effects, a plane strain cell model is used. Considera-
tion is restricted to deformations for which the straight lines bounding each
cell remain straight after deformation (this is a stronger constraint than re-
quired by periodicity). Also, attention is confined to deformations that
preserve the mirror symmetry of the array so that straight lines connecting
the centers of the cells remain straight.

In the axisymmetric analyses a cylindrical coordinate system (r, 0, z)
is used and the identifications y1 = r, y2 = z and y3 = 0 are made, while
in the plane strain analyses the yi-y 2 plane is the plane of deformation. In
either case, the region analyzed numerically is 0 < y' < w0 and 0 < y2 < bo,
and the boundary conditions on this region are

i 2 =0 T =0 on y2 =0 (4)

i 2 =U 2 = i,,(bo+U 2 ) T=0 on y2 =bo (5)

il1 = UI T,2 = 0 on y' = wo. (6)

Here, iae is a prescribed constant while U1 is determined from the speci-
fication of the transverse stressing. Defining,

ET - I TdAl (7)
AlA1

E2T1' T 2dA2  (8)

where Ai is the reference area of the cell face with normal in the y' direction
and A, is the corresponding current area. The quantity U1 is determined
from the condition that

l = P 2. (9)

The loading history consists of two stages. In the first stage, the cell is
subject to overall hydrostatic stressing (in-plane hydrostatic stressing in the
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plane strain) and p = 1. The value of El = E2 at the end of the first stage
of loading is denoted by o-H and is referred to as the superposed hydrostatic
stress. In the second stage, tensile loading parallel to the whisker axes is
imposed with the overall transverse stress (in plane strain, the in-plane
overall transverse stress) held constant, p = 0. Within the cell the fibers
are assumed to remain perfectly bonded to the matrix and traction and
displacement continuity conditions are maintained across the interface.

The material is characterized as an elastic-viscoplastic Gurson-type
solid [Gurson, 1975 and 1977). The total rate of deformation, D, is written
as the sum of an elastic part, D e, and a plastic part, D P, so that

D = De + DP. (10)

The flow rule is
D _= a  (11)

where

2q c (h3120%~ 91-1
2f.2--0(+ 2qf* cosh (12)

2I,

and

(I - ft (13)

Here, a is the average strength of the matrix material and

= 3 :o a oh = i:. (14)

The parameters q, and q2 were introduced by Tvergaard [1981, 1982] to
bring predictions of the model into closer agreement with full numerical
analyses of aperiodir array of voids. Valuesof ql=1.25 and q2=1 have given
good agreement between the predictions of the modified Gurson model
and the results of a numerical study of void coalescence in isotropically
hardening materials [Koplik and Needleman, 1988]. The function f*(f),
which was introduced by Tvergaard and Needleman (1984] to account for
the effects of rapid void coalescence at failure, has the form

f f h f;
f " f -+ U f hf. (15)

The constant f is the value of f* at zero stress in (12), i.e. f1 - 1/qi.
As f -4 f, f f. and the material loses all stress carrying capacity. In
the analyses of Koplik and Needleman [1988], it was found that the value
of varies slowly with stress triaxiality and matrix strain hardening, but



313

there is a rather strong dependence on the initial void volume fractmoii. For
the volume fraction of void nucleating particles considered in this study
(bee next section for details), the values of f,=0.10 and f1=0.25 were used
in the calculations. In general the evolution of the void volume fraction
results from growth of existing voids and nucleation of new voids,

S= (1 - f)DP: I + fnucleaton. (16)

The first term on the right hand side of (16) gives the rate of increase of
void volume fraction due to the growth of existing voids and, in the present
calculations, the nucleation of new voids is given by,

fntieleotson = P . (17)

As suggested by Chu and Needleman [19801, void nucleation is taken to
follow a normal distribution, so that for plastic strain-controlled nucleation,

Af I (x[-pN)J (18)

The strain and strain rate hardening of the matrix material is described by

-= O[o/g(c)]/ g(j) = qO(F/CO + 1)N co = o/E (19)

where L7= f di.
The function g(i) represents the effective stress versus effective strain

response in a tensile test carried out at a strain-rate such that 1 = io. Also,
o00 is a reference strength and N and m are the strain hardening exponent
and strain rate hardening exponent, respectively.

Standard kinematic relations are used to express the constitutive
law as a relation between the contravariant components (on the current
base vectors) of the convected rate of Kirchhoff stress, *'.j, and Lagrangian
strain rate, Eq,. When f a 0, this constitutive relation reduces to that for
an elastic-viscoplastic Mises solid.

The deformation history is calculated in a linear incremental manner
and, in order to increase the stable time step, the rate tangent modulus
method of Peirce et al. [1984] is used. This is a forward gradient method
based on an estimate of the plastic strain rate in the interval between t and
t + At. The incremental boundary value problem is solved using a combined
finite element Rayleigh-Ritz method [Tvergaard, 1976].

Material model
The material chosen as a model system for the finite element analysis is a
2124 aluminum alloy (powder metallurgy matrix) reinforced with 13 volume
percent of SiC whiskers. The evolution of microstructure in this system in
response to aging treatments has been well characterized using transmission

....V£a.,; ",.

7 m m ll ltallllli m m • • • ll



314

electron microscopy [Christman and Suresh, 1988]. The properties of the
matrix material selected for the analysis represent the peak-aged condition
of the matrix. The choice of matrix properties is such that the occurrence of
accelerated aging in the composite matrix due to the presence of the ceramic
whiskers is accounted for (see Christman and Suresh [1988] and Christman,
Needleman and Suresh [1989) for details). The mechanical properties of the
matrix material are: E = 70 GPa, vi = 0.33, 00 = 290 MPa, N = 0.13,
m = 0.004. Both the whisker aspect ratio and the cell aspect ratio were
chosen equal to 5, based on optical microscopy results. The elastic constants
of the SiC whiskers are taken to be E = 450 GPa and v = 0.17. On the
basis of prior experimental evidence, the interface between the SiC whisker
and the matrix was assumed to be perfectly bonded. The whiskers were
also taken to be aligned along the extrusion direction. The nucleation
parameters in (18), namely the volume fraction of void nucleating particles
fN, void nucleation strain EN and standard deviation stN, were chosen equal
to 0.05, 0.05 and 0.01, respectively. These values are estimated from the
experimental measurements performed by Van Stone ef al. [1974] on 2xxx
series aluminum alloys.

2.5

2.0-

H 0

1.0-

Gurson

0.5 - Mises

0.0I I I I
0.000 0.005 0.010 0.016 0.020

Figure 1. Effect of superposed hydrostatic stress on monotonic deformation.
Axisymmetric model.

Results
Axisymmetric model
The results for the axisymmetric calculations are shown in Fig. 1, where the
overall effective stress Ee = 6E2 - E1 I (normalized by the reference stress
0) is plotted against the axial strain. The numerical results show that

-'y
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the main effect of the superposed hydrostatic stress is on the ductility of
the composite; the stress-strain behavior prior to failure is not significantly
affected by cavitation in the matrix. This behavior can be rationalized by
the following arguments. Void nucleation is taken to be controlled by the
effective strain. At the onset of deformation, the effective strains in the
matrix are below the critical nucleation strain and no voids are present
in the matrix. Under these conditions, the Mises and Gurson models are
identical and the effective strain does not depend on the hydrostatic stress
level. Once a critical strain is reached, voids are nucleated in the metallic
matrix. Under the influence of a far-field tensile load (applied along the
fiber direction), a high level of tensile mean normal stress, orh defined in (14),
builds up at the ends of the fibers. This positive triaxiality (generated by
the constrained flow of the ductile matrix between the brittle fibers), when
superposed on externally imposed positive hydrostatic stresses, produces
rapid void growth in the ductile matrix. Consequently, failure takes place
shortly after the nucleation of the voids.

2.0
0.01

0.02
0.01

3.0 0.04 0.03

0.0025
.0

1.0

(a) (b) (c)
Figure 2. Contours of (a) normalized mean normal stress, -'h/o'0, (b) plastic

strain, i, and (c) void volume fraction, f at fave - 0.01. OH =
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Figure 2 shows contours of constant mean normal stress, plastic
strain and void volume fraction in the aluminum matrix at a far-field ten-
sile strain of 0.01 and for an externally imposed hydrostatic stress of +o,.
The superposition of the internally generated matrix triaxiality (due to con-
strained flow) with the remotely applied positive hydrostatic stresses causes
very large tensile mean stresses to develop in the matrix, especially close
to the fiber ends. Conversely, when compressive hydrostatic stresses are
imposed externally, the conditions become less favorable for the growth of
voids as the severity of tensile hydrostatic stresses in the matrix is partially
offset by the external hydrostatic stress, Fig. 3. As a result, the maximum
extent of matrix cavitation is also noticeably diminished, as shown in Fig.
3c. It is worth noting that failure occurs in a very localized zone around the
whisker ends when a tensile hydrostatic stress is superposed; the applica-
tion Of con~pressive hydrostatic stresses promotes more distributed damage
(compare Figs. 2 =nd 3).

0.02 0.01

0.0 .0025
0.0 0.04 0.01

0.0 0.02 0.02

3.0
0.01

.0
1.0 -1.0

0.02

-2.0 0.01

(a) (b) (c)
Figure 3. Contours of (a) normalized mean normal stress, o'h/Oo, (b) plastic

strain, 1, and (c) void volume fraction, f at ave 0.013. O"H =

'-"0.
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Plane Strain Model
Numerical studies by Christman, Needleman and Suresh [1989] have shown
that the distribution of the brittle fibers in the ductile matrix has a strong
influence on the overall constitutive response. One of the principal causes
for this geometrical effect is the change in matrix triaxiality caused by the
fiber distribution. The highest levels of matrix triaxiality develop under a
far-field tensile stress, when the fibers are arranged in a perfectly aligned
and uniform manner throughout the matrix. Relatively shifting the fibers
either in the direction of the fiber axis or in the transverse direction leads
to a reduction in the average level of triaxiality due to constrained flow.
This effect is more pronounced for the former case of "vertical clustering"
than for the latter "horizontal clustering". For this reason, finite element
analyses of the effect of imposed hydrostatic stresses on tensile deformation
were carried out in this work for a specific case of vertical clustering.

2.5-

2.0-

1.50

o ,1.0o '=O
b

0.5-

0.0- Gurson

-0.5- -------------- Mises

-1.0 1
-0.03 0.00 0.03 0.08 009 0.12 0.15 0.18

Figure 4. Effect of superposed in-plane hydrostatic stress on monotonic de-

formation. Plane strain model.

Detailed investigations of the effect of fiber clustering on the consti-
tutive response within the context of an axisymmetric unit cell formulation
require a full three-dimensional analysis. However, as shown by Christ-
man, Needleman and Suresh [1989], the basic features of the role of fiber
distribution in influencing deformation can be captured (with significantly
less computational resources) by plane strain models. In the plane strain
model adopted in this study, the whiskers were clustered vertically by 50%
an compared to the perfectly periodic and uniform distribution. If the short-
est distance between the ends of two coaxial fibers (aligned one beneath the

I7
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other) is a in the uniform and periodic distribution, and if this distance is
reduced to a lower value a' for the vertically clustered arrangement, then
percent of vertical clustering is given by [(a - a')/a] x 100 (see Christ-
man, Needleman and Suresh [1989] for full details on vertical clustering).
It should be noted that in the plane strain model, the external hydrostatic
stresses are imposed only in the plane of the unit cell.

1.0 0.061. 0.02 0.o02

0.04 0.02

2.0 0.06 0.04

0'.0

1.0

2.00K

-2.0 C0.06
0.04

0.04

(a) (b) ()
Figure 5. Contours of (a) normalized mean normal stress, ah/o, (b) plastic

strain, 9, and (c) void volume fraction, f at c.,e = 0.02. orH = 0.

Figure 4 shows the numerically predicted tensile stress-strain re-
sponse for the composite material where the effect of imposed in-plane
hydrostatic stress is illustrated for the plane strain model with 50% verti-
cal clustering. The role of the void growth process in influencing the overall
stress-strain behavior of the composite is evident from the results shown
for arH = 0. The lower strength and lower strain hardening exponent ex-
hibited by the Gurson matrix material (as compared to the Mises matrix)
are a consequence of the softening arising from the nucleation and growth
of voids. The superposition of a negative in-plane hydrostatic stress leads
to a strain-to-failure value which is three times higher than that without
any superposed hydrostatic stress and seven times higher than that with
a far-field tensile hydrostatic stress of the same magnitude. Although the
two-dimensional nature of the model precludes any direct comparison with

14 -.mmm
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experimental results, it is worth noting that the ductility improvements
predicted by the present analysis for imposed negative hydrostatic stress
compare favorably with experimental observations reported in the litera-
ture for 2xxx aluminum alloys reinforced with SiC whiskers and particulates
[Vasudevan et aL., 1989; Liu et al., 1989].

0.06

2.0 0.04 0.02
2.0

0.02

0.04

0.07

2.0.2 0.02

00.04

2.0 0.07
0.06
0.04
o.02

(a) (b) (c)
Figure 6. Contours of (a) normalized mean normal stress, orh/o, (b) plastic

strain, ?, and (c) void volume fraction, f at Cave " 0.02. oT H "

+0"o.

Figures 5 and 6 display contours of constant hydrostatic stress, plas-
tic strain and void volume fraction in the matrix for numerical simulations
pertaining to superposed in-plane hydrostatic stresses of 0 and +o, at a
far-field tensile strain of 0.02. Note that the higher level of tensile triax-
iality for externally imposed tensile hydrostatic stresses (Fig. 6c) causes
a larger void volume fraction to develop than in the case of zero external
triaxiality (Fig. 5c). In both cases, void nucleation is especially pronounced
between the ends of adjacent whiskers where large plastic strains and mean
stresses are produced. For positive superposed hydrostatic stress, the void
volume fraction reaches a critical value of 0.1 at an axial strain of 0.025 and
the composite fails. Under compressive superposed hydrostatic stress, void
growth is suppressed and the matrix undergoes a larger amount of plastic
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Figure 8. Experimental observation of strain localization in 2124 Al-13 vol.
% SiC whisker composite under an imposed negative hydrostatic
stress. (From Vasudevan et aL, 1989)
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deformation before failure. This trend is illustrated in Fig. 7 with contours
of constant hydrostatic stress, plastic strain and void volume fraction in
the matrix for an externally imposed negative in-plane hydrostatic stress
of -a-. at a far-field tensile strain of 0.12.

In Fig. 7, note that the porosity extends over a significant fraction
of the unit cell and that the void volume fraction is lower than the critical
value. The plastic strain contours reveal that strains of up to 0.4 occur
in the regions populated by the voids. The material confined within the
ends of adjacent whiskers undergoes the greatest extent of plastic flow. In
this analysis of deformation for 50% vertical clustering, the localization of
strain under negative imposed hydrostatic stress is clearly evident along
the line linking the whisker ends. Such strain localization under a negative
imposed hydrostatic stress has been documented experimentally for a 2124
aluminum alloy reinforced with 13.2% SiC whiskers, Fig. 8 [Vasudevan et
al., 1989].

Concluding Remarks
Recent finite element simulations have shown that significant hydrostatic
stress levels develop in the matrix of whisker reinforced composites as a
consequence of constrained plastic deformation, Christman, Needleman and
Suresh [1989]. The level of this constraint-induced hydrostatic stress is sen-
sitive to the distribution and shape of the reinforcement particles. Addi-
tionally, numerical studies of porosity evolution in whisker-reinforced metal-
matrix composites [Llorca et al., 1990] show that the tensile hydrostatic
stresses which develop near the whisker ends promote failure due to ma-
trix void nucleation, growth and coalescence. In the calculations reported
here, a positive superposed hydrostatic stress enhances this effect, while
a negative superposed hydrostatic stress counteracts it. The effect of the
superposed hydrostatic stress on ductility is found to be much greater than
on the deformation response. Vertically clustered (overlapping) whiskers
in plane strain exhibit a seven fold increase in the strain-to-failure when
the superposed hydrostatic pressure changes from +or to -or., while the
effect is much smaller for an axisymmetric model of a uniform distribution
of whiskers aligned with the tensile axis. This is because of the larger hy-
drostatic stresses that develop due to constrained plastic flow in the aligned
fibers.

The only failure mechanism modelled in this investigation is matrix
cavitation. A superposed hydrostatic stress would be expected also to affect
failure by fiber decohesion and by fiber cracking.
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Abstract

The microstructure of many semi-crystalline polymers consists of rather broad,
thin composite inclusions of crystalline and amorphous domains. A microme-
chanically based composite model is proposed to study plasticity and texture
evolution in these composite materials. Special consideration is given to molecu-
lar chain inextensibily within the crystalline phase. Molecular alignment within
the amorphous phase is accounted for by introducing a back stress tensor in the
corresponding flow rule. Interface compatibility and traction equilibrium are con-
sidered within each composite inclusion. A modified Taylor-like localization law
is proposed to deal with the singularity problems related to kinematic deficiency
in some inclusions. Applications of this model are made to predict the behavior
and deformation texture evolution in initially isotropic High Density Polyethylene.
Comparisons of our predictions to experimental data are given.
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1. INTRODUCTION

Semi-crystalline polymers are a class of naturally two-phase composite ma-
terials. The morphology of these composites consists of co-existing crystalline
domains and amorphous domains associated with each other in a fine plate-like
morphological structure. In an undeformed state, semi-crystalline polymers are
generally spherulitic. The material element representative of the spherulite con-
sists of a two-phase composite inclusion lying in the radial direction of of this
spherulite (Figure 1). Under plastic straining, morphological and crystallographic
textures evolve with plastic deformation; the evolution of these textures affects
the macroscopic behav'or. For instance, a strong textural hardening is observed
in tension but not in simple shear of Polyethylene (G'Sell and Jonas [1]; G'Scll,
Boni and Shrivastava, [2]).

The aim of this work is to develop a micromechanically-based model to describe
the plasticity of semi-crystalline polymers and to predict the evolution of textural
anisotropy and the macroscopic behavior under different loads. Possible plastic
deformations mechanisms in semi-crystalline polymers were reviewed by Bowden
and Young [3] and by Haudin [4]. Like other crystalline materials, the crystalline
phase of the polymers deforms by crystal! ugraphic slip, twinning and martensitic
transformation. However, all of these mechanisms leave the crystallographic chain
direction inextensible, and therefore provide less than five independent systems.
The plasticity of the amorphous domain can be described by the double kink
model proposed by Argon [5]. The molecular alignment within this phase can be
represented by a back stress tensor of the type used in the work of Boyce, Parks
and Argon [6].

We propose a viscoplastic composite model in which we neglect elasticity and
pressure sensitivity but account for the contributions of both crystalline and amor-
phous phases to large plastic straining and rotation. Incompressibility is assumed
in both phases. In this model, we solve for the kinematics and equilibrium within
a two-phase composite inclusion embedded in an infinite matrix. The compos-
ite inclusion consists of a crystalline lamella and its corresponding amorphous
layer (Figure 1). Applications of this composite model have been made to predict
crystallographic and morphological textures and stress-strain behavior of High
Density Polyethylene (HDPE) under tension and simple shear. Predicted results
are compared to experimental data.

2. CONSTITUTIVE RELArIONS

2.1 Crystalline phase

IA

m _ f y-
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b)

CrYstallne LameUa Amorphous Layer

Figure 1: a) schematic reperesentation of the spherulite
( HOFFMAN et al.. [141)

b) composite inclusion.

s lip system normalized resistance

___0___0____1.

Chain slip (010)[001I

(100)[0101 .
Transverse slip (010)[100J 1.4

_________ {110) < 110 > 1.8

Table 1: Slip systems of polyethylene and estimates of their corresponding
normalized initial critical resolved shear stresses.
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In this study, we consider plasticity by slip. The available slip systems in the
othorhombic unit cell, within the crystalline phase of polyethylene, are summa-
rized in Table 1. Estimates of initial deformation resistances of these systems are
normalized to that of chain slip and are also shown in Table 1.

Each of the K slip systems, in a given crystalline lamella, is characterized
by the couple (s',n') where sa and no are the unit vectors representing the slip
direction and slip plane normal of the slip system a, respectively. The slip rate
j* of each slip system can be related to its conjugate stress measure To (resolved
shear stress) via a power law relation ( Hutchinson [7]). If we denote by go the
shear strength associated with the system a and by j'o a reference shear rate
identical to all slip systems, the power law relation can be expressed as follows:

Ta ga 

)n-1

g o, g ,o

where n is the inverse rate sensitivity coefficient. go may evolve with strain hard-
ening.

When elasticity is neglected, the strain rate DC within the crystalline lamella
is generated by the shear rates of all slip systems. According to relation (1),
the shear rates of non-active systems are negligible. Due to chain inextensibility
in the crystalline lamella, less than five independent slip systems are available in
crystalline polymers. Slip systems of polyethylene, given by Table 1, comprise four
independent systems. Therefore, the missing degree of freedom can be expressed
as a constraint on the the strain rate:

C'. D' = 0. (2)

C' S c ® c - 11 is the deviatoric part of the dyadic c ® c, with c representing
the the crystallographic unit vector in the chain direction (constrained direction),
and 1 is the second order identity tensor.

Let us denote by SC the deviatoric Cauchy stress within the crystalline lamella.
This traceless tensor can be decomposed as a sum of a four-dimensional stress S *"

perpendicular to C' and the fifth component S in the constrained direction C'.
Parks and Ahzi [8] show that the resolved shear stress r', on the slip system a,
is independent on the stress component SC:

a = Sc" 
. Ro. (3)

where R - 0 a n + no } s } is the symmetric part of Schmid tensor asso-
ciated with slip system a.
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A constitutive law for the constrained single crystal is obtained by expressing
the strain rate DC as a sum of slip system contributions to the rate of plastic
shearing (D' = EK I : R*). By the use of (1) and (3), this constitutive law can
be expressed as follows:

Dc = {firo K (I 1 
1  ) Ro ®Ra I [Sc1 ]. (4)

E - - RgoR, °J ,

Further detail on constrained crystal plasticity may be found in the work of Parks
and Ahzi [8].

The spin tensor We of the lamella can be decomposed as a sum of plastic
spin W P and lattice spin W*. The lattice spin controls the rate of change of
crystallographic axes; it is expressed as:

W" = We - W P

N
= We - O,  (5)

a

where A"- (so ® n - no ® so) is the skew part of the Schmid tensor associ-
ated with the slip system ct. We note that D' and We are the symmetric part
and skew part, respectively, of the velocity gradient LC: Lc = D' + W e .

In the constrained hybrid (CH) model that Parks and Ahzi [8] applied to
an idealized 100% crystalline polyethylene, the stress component S in the con-
strained direction was estimated to equal the corresponding macroscopic stress
component. This estimation is not needed for the current composite model since
the local equilibrium provides, in general, a closed form solution for this stress
component (Parks and Ahzi [9]).

2.2 Amorphous phase
The amorphous phase of polymers is a disordered macromolecular solid. The

plastic deformation in this phase occurs by thermally activated molecular segment
rotations (Argon [5]). Under plastic straining, molecular alignment (amorphous
texturing) develops within this phase. Boyce, Parks and Argon [6] introduced a
back stress tensor in the flow rule to account for the plastic resistance increase
accompanying the molecular alignment.

To model the plastic deformation within the amorphous domains of semi-
crystalline polymers, we assume a power law relation between the shear rate j"
and the corresponding shear stress of each amorphous domain:

= ) (6)

41
.; 0 Gt
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where jYo and T0 are reference strain rate and reference stress respectively and n
is the rate exponent. These material parameters can be chosen equal to those of
the crystalline lamella, with To = g[ l° ° l representing the initial shear strength on
the easiest slip syster (chain slip). The coetficient a characterizes the relative
softness of the amorphous domain. For an amorphous phase with flow strength of
the same order to that of the crystalline one (glassy amorphous), the coefficient
a is expected to be of the order of unity. In the other hand, for an amorphous
phase with a flow strength smaller than the crystalline one (rubbery amorphous),
the coefficient a should be considerably smaller than unity.

Following the work of Boyce, Parks and Argon [61, we account for molecular
alignment effect, in the amorphous domain, by introducing a back stress tensor
B' in the flow rule. If we denote by Sa the deviatoric Cauchy stress, the driving
stress within the amorphous domain is defined as: S0 - B a. The resolved shear
stress ra is defined as a norm of the driving stress. Introducing (5) in the flow
rule leads to the following three dimensional constitutive law for the amorphous
domain:

DO=o(I aTo i aro (7)

The back stress principal components B' evolve with the principal components
Vi" of the plastic stretch tensor according to the following relation (Boyce, Parks
and Argon [6]):

B i = C - -5 - V P C - l ( - 3 ]V L~' ( ( 8

where N is the number of rigid links between entanglements and is equal to
the tensile locking stretch squared (N = A). CR is approximately the rubbery
modulus and L is the Langevin function defined by £ (/3l) = coth ('3j) - 1/3li
ViP/v'N. We note that the plastic stretch tensor V P = V (elasticity neglected)
is obtained from the deformation gradient tensor F* of the amorphous phase:
V P 

a V = (F0F T). Figure 2 shows simulated stress strain curves for tension
and compression of an amorphous phase deformed homogeneously according to
relation (7). Further detail on this constitutive law is given by Parks and Ahzi[91.

3. KINEMATICS AND EQUILIBRIUM WITHIN THE

COMPOSITE INCLUSION

The basic element that constitutes the spherulites of semi-crystalline polymers
consists of a thin, broad composite inclusion of crystalline lamella an amorphous

.r-
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layer (Figure 1). These composite inclusions are modeled as infinitely extended
'sandwiches' with planar crystalline-amorphous interfaces. In what follows, we
denote by n1 the inclusion normal and by 0'1 the angle between n' and the crys-
tallographic chain direction c.

3.1 Inclusion volume-averaging
Let us denote by L, Lc and L the average velocity gradients of the inclu-

sion, crystalline lamella and amorphous layer, respectively. The inclusion-average
velocity gradient can be expressed as:

L=fLV + (I - f) L c, (9)

where fa represents the relative thickness of the amorphous layer (amorphous
volume fraction). Similarly, the inclusion-average stresses can be written as:

S1 = fa Sa + (1 fa) Sc, (10)

pI = f. a + (I _ fa) pC, (11)

where St is the average deviatoric stress within the composite inclusion. p1 , pC
and pa are the pressure terms of the inclusion, crystalline lamella and amorphous
layer respectively.

3.2 Jump conditions
The first jump condition demands continuous velocities across the lamella-

amorphous interface. If we denote by e the permutation tensor and by n,' the
components of the interface normal nt , the continuity conditions are given by the
following relation:

CpALjqnq = 6,pq(L q - L!q)nq = 0. (12)

The second jump condition consists of traction equilibrium across the interface.
It is expressed as:

(Tc - Ta)n' = (Sc - Sa)n' - (p' -p')l n = 0. (13)

Tc and TG are the Cauchy stresses in the crystalline and amorphous phases of the
inclusion, respectively. Since incompressibility is assumed and pressure sensitiv-
ity is neglected, only the two equations of (13) not involving pressure terms are
considered. The third equilibrium equation is assumed.

To solve equilibrium equations for local kinematics, Parks and Ahzi [9] con-
sidered three different cases: 1) no constraint in either of the two phases, 2)
one constraint in the chain direction of the lamella, and 3) two constraints in
the lamella. Here we consider only the case of one constraint, which applies to
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polyethylene crystals, and assume the most general situation in which the lamella
normal nt is not parallel to the chain direction c (' 96 0, 7r). To prescribe the
inclusion velocity gradient L, a localization law should be imposed on the com-
posite inclusion in the manner of existing model- (Taylor, Constrained Hybrid,
Self-Consistent, Sachs, ...).

4. LOCALIZATION LAW AND TEXTURE UPDATE

4.1 Localization law
The simplest an the mostly used localization law is known in crystal plasticity

as the Taylor model. This model is based on the suggestion of Taylor (101 that,
in a pollycrystalline aggregate, local deformation is approximately uniform and
equal to the macroscopic uniform one imposed on the aggregate. When the repre-
sentative element of the aggregate is a single crystal, five independent slip systems
are needed to accommodate this uniform deformation. For crystals lacking five
independent systems, Parks and Ahzi [8] proposed a modification of Taylor model
and applied it to several constrained crystals. In the present study, the representa-
tive element of the aggregate (semi-crystalline polymer) is a two-phase composite
inclusion comprising a crystalline lamella lacking five independent slip systems.
When n' is parallel to c (0' - 0), the entire inclusion I is constrained in n1

direction.

The most general case, for initially spherulitic polyethylene, is that the normals
n1 and their corresponding chain axes c do not coincide. The angle ' between
these two directions has been measured by several authors (Basset and Hodge [11];
Varnell, et al., [12]). The reported mean value varies from 170 to 400. However,
a general deformation can be accommodated by the composite inclusion, and the
Taylor model (strain rate continuity) can be applied. On the other hand, under
plastic straining the angle 0t1 may decrease for some inclusions and become close
to zero. When this occurs, due to both the non-deformability of the lamella in the
c direction and incompressibility, the deformation within the entire inclusion in c
or n' directions will also decrease, and the stresses predicted by the Taylor model
become unreasonably high. The applicability of the Taylor model then becomes an
issue for all inclusions having a small angle between ni and c (quasi-constrained
inclusions). To solve this numerical problem, we propose a phenomenological
modification of the Taylor model to be applied to the quasi-constrained inclusions
(0 < of < 00 ), where 00 is a suitably small angle. This modification is a local
relaxation of the imposed strain rate component in the n' direction without any
loss in global compatibility. The relaxation will depend on the angle 0' . The
stain rate D' within each inclusion I, can then be related to the macroscopic
strain rate 1D by the following relations:

, f° . i

.. . 'm . •- u , m ,,m -,
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D=P<P>-' b for 01'<Oo,

D= D for tbPI > o; (14)

where 3

= 2"- 2(1 -( t/40)m)N®N. (15)

"is the fourth order identity tensor and N' = n'n'--I1 is a tensorial representa-
tion of the lamella normal direction. bo is a critical angle, m is an arbitrary power
coefficient and <. > designates the volume average over all quasi-constrained in-
clusions. The main effect of this local relaxation is to limit strain rate in the
nt and c directions in those inclusions with small 0't values; in turn, much more
modest stress levels are generated within each inclusion. When the shape effect is
neglected, the inclusion spin W' can approximately be equated to the macroscopic
spin W: W'-=W. (16)

4.2 Texture update
The rate of change of lattice orientation is given by the spin W* defined by

(5). Following Asaro and Rice [141, the rate of change of the crystallographic axes,
for instance chain axis c, can be expressed as:

c= W'c. (17)

Since the distribution of lamellae normals (morphological texture) is, in gen-
eral, noncoincident with that of any particular crystallographic direction within
the crystalline regions, it is important to update the lamella normals indepen-
dently. For this, we use the simple concept based on convected material coor-
dinates. Let 6xl and bx2 be two infinitesimal vectors in the reference inclusion
plane at time "0", emanating from a common origin. At generic time t, when
deformation gradient is F(t), these vectors are convected to 6h, = Fbxl and
bh 2 = Fbx2, respectively. The crystal-amorphous interface is material, however,
so the interface normal at time t = 0 is

x -X/IX6X2 (18)n 1(0) l bx x21'

while at time t, it is
Fbxl x F6x 2  (19)

n'(t) - IF6x x F6x 21"

We update F for each inclusion according to F = LF or, in incremental form,
F(t + At) = exp(LAt)F(t). Although L 6 L', so that FC # F' in general, the
compatibility requirements on L and L' ensure that the normal n'(t), as calcu-
lated using either F' or FC, will be identical. However, an updated Lagrangian
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scheme (current configuration - reference configuration) is convenient for updat-
ing nI.For this, we use FC with FC(t+At) = exp(LcAt). The molecular alignment
(amorphous phase texturing) is accounted for by the back stress B'. To update
B", it is necessary to use the Lagrangian scheme (initial configuration - reference
configuration). This can be obtained by using Fa(t + At) = exp(LaAt)F*(t), with
Fa(t) the cumulative deformation gradient from time '0' to time 't'.

5. RESULTS AND CONCLUSIONS

5.1 Results

We applied the present composite model to an initially isotropic (quasi-spherulitic)
high density polyethylene (HDPE) with f. = 0.3. The initial distribution of chain
axes c is shown by Figure 3a for 244 orientations. A random distribution of lamel-
lae normals ni, shown by Figure 3b, is generated by assuming an initial angel 'k
of about 300 for all inclusions. The values of m = 5 and Oo = 15* have been
chosen in the projection operator P defined by (15). No crystallographic strain
hardening is considered in the following applications. Our first application con-
sists of predicting the uniaxial reference stress do in the following power law creep
equation:

D" = ", (20)

where D'9 = 2I): b and a'e = : are the macroscopic equivalent uniaxial
tensile strain rate and the equivalent uniaxial tensile stress, respectively. Figure
4 shows the normalized tensile reference stress as function of the rate sensitivity
coefficient 1/n for a = 1, a = 1/4 and a = 1/10. Also shown in Figure 4 for
each value of a is an indication of the sensitivity of model results to the relative
strengths of the slip systems. The lower dashed curves for each case represent
an assumption of equal slip system resistances. The influence of the amorphous
phase volume fraction on the tensile reference stress is shown in Figure 5. For the
extreme cases of f. = 0 and f. = 1, the tensile reference stresses are calculated by
the 100% crystalline model (CH model) and by 100% amorphous model (equation
(7)), respectively. The singularity shown by figure 5, for a = 1 when f. goes to
zero, is due to high stresses predicted by Taylor-like localization law. Whereas, for
soft amorphous domains (a = 1/4; a = 1/10), more modest stresses are generated
within the amorphous domains even for very small amorphous volume fraction.
As a second application, a uniaxial tension test is simulated for HDPE. The pre-
dicted stress-strain curve is compared to data of G'Sell, et al., [1,2], in Figure 6.
The predicted texture (crystallographic and lamellae normals distributions) are
shown by pole figures in Figure 7. The final application corresponds to simu-
lation of a simple shear test. For the same parameters chosen to fit the tensile
stress-strain curve to experimental data, the predicted macroscopic behavior in
simple shear is again compared to the data of G'Sell, et al., [2], (Figure 8). The
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predicted textures in simple shear are represented in Figure 9. We note that the
difference in the values of o chosen the fit tension and simple shear curves is due
to the results reported by G'Sell, et al., [2]. In an unpublished work of G'Sell, this
difference was corrected and in fact the the von-Mises yield stresses in tension and
simple shear coincide.

The influence of texture can be seen by the hardening difference in tension
and simple shear. The fiber crystallographic texture developed in tension in con-
junction with molecular alignment induces high stresses because of the lack of
deformation mechanisms at large plastic straining. On the other hand, for simple
shear, the texture development evolves so as to continue to permit easy mecha-
nisms (chain slip) to operate. Therefore, negligible textural hardening is involved.
The discrepancy betwcen our predictions and experimental data for simple shear
(Figure 8) is probably due to the upper bound nature of the Taylor model that
we apply to the composite inclusions.

5.2 Conclusions

We developed a micromechanically-based composite model for semi-crystalline
polymers which accounts for the co-existence of both amorphous and crystalline
domains. Constitutive equations accounting for kinematic deficiency in the crys-
talline phase are given. The molecular alignment and the relative softness of the
amorphous phase are included in a proposed power law constitutive relation for
this phase. Results of a Taylor-type localization law applied to the sandwich in-
clusions of HDPE are encouraging and satisfactory. Other applications of this
model are under investigation (Parks and Ahzi [91).
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A Unified Formulation of Micromechanics
Models of Fiber-Reinforced Composites

J. L. Teply* and J. N. Reddy"

1. Introduction

In a micromechanics constitutive model the overall instantaneous

properties of fibrous composites are defined by relations between

overall stress and strain averages. Such averaging techniques are also

known as 'homogenization'. The models may account for fiber, matrix and

fiber-matrix interface properties and their interactions (see 11-5]).

Various micromechanics approaches are used to calculate overall stress

and strain fields using different representative micro-geometries (i.e.

unit cells); see, for example, the self-consistent method of Hill 1l,
the variational formulation of Hashin [2), the vanishing fiber diameter

model of Dvorak and Bahel-El-Din [31, periodic rectangular array of

Aboudi [41, and the periodic hexagonal array (PHA) model of Teply and

Dvorak 15). Although various models use different representative

geometries of the unit cell and different approximations of the

displacements and/or stresses to obtain the overall properties, they all

share certain common basis. The present paper has the objectives of

finding the common basis so that the models can be related to each

other.

The finite element formulations based on the principle of virtual

displacements, the principle of virtual forces or a mixed variational
principle are used to develop the unified formulation of micromechanics

models. In order to develop the unified formulation for the overall

averages of a model, the local interpolation of displacement and stress

fields are developed such that the local fields of the model are

matched. The interface-continuity of displacements and tractions and

overall boundary conditions are enforced either point-wise or in a
variational (i.e. integral) sense, as required by the original model.

The relationship between the overall stiffness properties of the unified
model and the original model is usually established via the comparison

of unit cell energies. The unified finite-element formulation enables

*Senior Technical Specialist, Alcoa Laboratories, Alcoa Center, PA

Clifton C. Garvin Professor, Department of Engineering Science andI lMechanics, Virginia Polytechnic Institute, Blacksburg, VA 24061.

-7 77 
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us to study relative convergence, accuracy characteristics and the

effect of the approximation of fiber geometry and boundary conditions on

the solution. The effect of the unit cell geometry can also be

evaluated. The micromechanics models of Aboudl 141 and Teply and Dvorak
[51 are considered in the present study for detailed discussion.

The model of Teply and Dvorak [5] is already developed in the form of a
finite element model. The Aboudi model [4], which is presented as a

boundary-value problem of elasticity, is reformulated using the finite

element formulation with independent approximations of displacements and

stresses. It is shown that linear approximation of the displacements

and piece-wise constant (i.e., constant within each subcell)

approximation of stresses naturally results in Aboudi's original model.

2. Formulation

The microstructure of Aboudi's model consists of square fibers

surrounded by the square cylinders of the matrix material (see Figure
1). It is assumed that a volume 2 with boundary r is filled by a large
number of square fibers. It means that the smallest typical dimension

of the volume, hv, is much larger than max (hl9h2 ,zl,% 2). There are

several ways to fill the volume by a periodic microstructure. Aboudi
selected a rectangular unit cell which consists of a square or

rectangulay fiber at one of the unit cell vertices and three rectangular

cylinders of the matrix material at the other three vertices. To fill

the volume, a simple translational transformation is applied to the unit

cell. The boundary r is approximated as shown in Figure 2.

The Hellinger-Riessner variational principle for the entire volume n can

be written as follows (see Reddy 161):

11 = ij 2 (ui,j + uj i)dn - 2 f oijMijkaak da

- u Uldr - f Uijnjuldr (1)
rt ru

where alj and u, are the stress and displacement components,.Mijkt are
the components of the tensor of material compliances, t, are the

components of the boundary traction vector defined on rt, ul are the

components of the specified displacement vector on rug and r = rt + ru-
The tensor components Mijkz are piecewise constant functions with

discontinuities along the fiber/matrix boundaries. In what follows, it

will be shown that Aboudi's displacement and equilibrium equations can

7; j
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Periodic Microstructure of Aboudi
Figure 1
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be derived when piecewise linear and piecewise constant finite-element
interpolation functions are applied to the two independent fields ui
and Oj, respectively, and ru is equal to zero. Of course, the
interpolation functions must be periodic in a with the periodicity
interval (hI + h2) in the x2-direction and ( + 2) in the

direction.

In order to facilitate our proof, we shall use Aboudi's notation for the
unit cell. The unit cell subcells and subcell coordinate systems are
shown in Figure 3. In the present paper the subcells will be sometimes
referred to as the fiber or matrix finite elements. The unit cell has
length d in the xl-direction. Length d is arbitrary because the fiber
and matrix deformation in the x1-direction is assumed to be uniform.
Due to this uniform deformation no local x(SY) need to be considered in
the subcells.

The finite element interpolation of ui, which is equivalent to Aboudi's
displacement field, is of the form

(BT)8('Y) i = 1,2,3 (2)

where u(BY) denotes the i-th displacement component at j-th
node, 919eY) are the linear Lagrange interpolation functions [7],
and u04) are the displacement component of an arbitrary subcell (sy).
In view of the displacement continuity across subcell boundaries, the

njsY) satisfy the following relations:

u(11) = (21) u(11) = (21)
12  =U-3  13 1-i2

(3)

U(12) u(22) u (12) =u(22)12 =1"3 " 1"3 =12

and

U(11) = u(12) + (12) (12)
, u1 2 +u1 3  -uil

u(12) u (11) u(11) u(11)1l =1"2 U "t -"1

(4)

U(21) u (22) u(22) u(22)11 = 12 U i1i1

u (22) u (21) + u(21) - (21)ii Q 1t 3 " 1t

. ...

. m m i a m m mI i i l m m m
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Boundary 17

Approximation of Boundary by Unit Celis
Figure 2

X2

1x 2 1

-0) (2

,11) 2 X3 (12) 2 3

(2) q3 (2) 3
x2  x2

-MI (2)
X 3  X 3

(21) 2 (22) 2

Aboudi's Notation In Finite Element Concept
Figure 3
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Note that continuity conditions (3) are automatically introduced during
the finite-element assembly procedure (see 171) whereas equations (4)
are not a part of the assembly procedure and must be introduced via
linear combinations for unknown JOBY) 123) U 4 Ineuto 2

corresponds to the nodal value at distance d above nodal displacement

iiin the Xj-directlon. The shape functions 9O are equal to

(~0y) L i

1(Y 1 L-(s) '.LI-(y)
2 f d h a 2 z 3

(5)

3 2 rd 1 +h 02 9 3

4 1

We define functions W~y( O, Y(j andY(')Xj by

WOO (U +~ u(x) *1(SI) and ) U(Y)]

- L (0y) (SY)
4 *h 0(u13  - u12 ) (6)

*(0y) 1 (ny) + JY uB)
=.-(13  12 - l

Then Eq. (2) can be cast in the following form

u (BY) .W(OY) + ,(By);(B) +. *(0)ji) (7)

which is Aboudi's form of the displacement functions in individual
subcells. The derivation of Aboudi's periodic displacement field can be

now completed by the transformation of equations (3) and (4) to Aboudi's

continuity conditions. To accomplish the transformation, we first

express nodal displacements JO)in terms of W(BY). ,(By) an (BY)
ij i andY
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From (6), one can readily derive

U(CO) = W(BY) -1 'r(BY)

i2Y)= O 10 !A *(O) (8)12 io 2 1

uO = WO + is *(BY)

where W(y is equal to W (s,) we x, is equal to zero. Thisjo wherestriction on W(B'r) does not affect the generality of our derivation
because equations (3) to (7) remain unchanged with respect to a
translation of the xj = 0 plane along the x1-axis.

X1 +X(9)

11
where xis an arbitrary coordinate from a.

Substitution of (8) into (3) yields

W(1') -hi 0 (11) _ W(21) _ h2 0(21) = 0

W(11) + LI .(11) _ (21) h 2 0(21) - 010 2 1 ~ io ~2 1

W(12) _hi 0(12) _ W(2 _h2 0 (22) = 0 (0

2o T i i

W(12)+ h1 .(12) W(22) +h 2 .(22) = 0
~io 2 1 -io 2r 1

Similarly, the substitution of (8) into (4) yields

W 1(11) -ti T(1 W (12) =2V 2 0

W1)+ ti: ,r(11) W(12) '2 ,(12) =0

2o T i i~o 2 1

W(1-_t '(21) W(2 "2(22) =0 (1

W(1 + 1(21) -W(22) +? 12(22) =0

Equations (7), (10) and (11) confirm that the finite element
interpolation function (2), (3) and (4) correctly describe the
kinematics of Aboudi's model.
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The interpolation functions for the stress components c j can be
selected to be constant in each matrix or fiber element

O(By) = SOBY) (12)
ij ii

Thestrss ompnens SOY)are constant ini each (oy) element; S(OY are

defined inside and on the boundary of the (B'v)-element, and they are
zero anywhere else.

The mixed variational principle (1) is now used to derive Aboudi's
equilibrium equations for o(OY). Let us substitute (2), (3), and (4)
into (1)

R f.1 ,(O)(0 U(Y) . 0 U(B)) C(BT)M S(ST)lda

a 2 [ijY (kju) + ek,i jk~~ - ijkz kt

f * 0 (oy)dr (13)
rt thekulk

Integration by parts can be applied to the first term in (13).

Since u(BY) are discontinuous along interelement boundaries, the
i

integration of (13) must include surface integrals on these boundaries:

a 2 (By) (By ik e B)*. ~ (y ij,i k jk 0ij ijktakt

+f 1V(jY) (Oy)6 +(~ O,(OY)n($Y8 u(oy)Idr(By) (14)
i j~ okuik: ij i k jk

- ; {~ (BY~) 1~ [(By) n(By)e kUikY + (Sy) njBy)eku 1jdr(BY)

where ris the sum of all interelement boundaries, n(By)iste -h
nBy i steih

component of the unit vector perpendicular to r(y boundary:

n =Y cosine of the angle between the unit normal vector
;O and the x1-axis

=COS (n *xi) (15)

Since *F~ aj equation (14) is equal to

if (O+ M
0i O~d
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+ V flj k 1kk - f (t* - ,)n(' . d (16)
ii ( r rt ( ivj k i y)eku (16

In order to use the Hellinger-Riessner variational principle (16) in the
derivation of overall properties of composite materials, it is necessary
to establish relations between the independent variables atj and ut. A
simple way to establish this relationship is to transform the mixed
formulation (16) to the equilibrium formulation. The equilibrium
formulation is based on the complementary energy principle for linear
elastic materials, or minimum stress rate variational principle for
elastic-plastic or viscoplastic materials. The functional (16) is
transformed to a complementary energy functional when the first term in
volume integral and the interelement boundary integral are set equal to

zero. Since u(By) are arbitrary nodal variables the first term in theik
volume integral must be zero:

I (jYJJOda = 0 (17)

Evaluation of (17) yields Aboudi's equations of equilibrium in terms of
stress moments (see [41) if Legendre polynomial are used to
approximate oy)ij
In all Aboudi's calculations, only the constant terms of Legendre
polynomials are used in 0o(

Y) approximation as suggested by Eq. (12).
i

Under these conditions, the first term in (16) is automatically equal to
zero, i.e., equations of equilibrium are trivially satisfied inside
each (oy)-element. The second term in (16) introduces interelement
continuity conditions for for example, consider the interelement
boundary between elements ey 11 and By = 12. The interelement boundary
integral has the form

hn/2  d x(), ( 1 - x )n d [0112 [U ) 2..')u(11) + X(1 1 ).(11)

x2, (111 (121(u(12)  1 + (1 ) (18)

1

xI  x
(1)

+ I+2 12) + ̂  (12)l}dxd60) 0+~ ~ (d +h 1"t d "4 1

(11) and .(22) fo
After substituting oil ad 1 from (12), the evaluation of (17)

yields

A - /
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~S( 2)dh (U(12) (1 (2) - 12 + 2 U(12) 0 (19)

The expressions in parentheses are the nodal displacement at

Q.nc 0.l~ y-) and F (A(~ 0 [see Eqs. (5) and (2)].
Snethe strains ein fiber and matrix elements are the same, the

nodal variable u'r and JOY) must be related as follows:i2 13 U4

U~)(11) (13') (21 u(21) +u2)

U(12) 1 I((12) + u(12)) = u(22) - u(21) + u (21)) (20)u14  2 ( 12  13 14 2 12 U

The multiplication of (20) by 1and addition of the first and third term
of (20) to the right hand and left hand side of the second connectivity

equation (4), respectively, yields

U(1) I u(12) I u(12) + .1u(12)

- (11) 3 (11) 1 u() + 1 U(11) (21)
~uil +4 u1 2  + 4 U13 2 A4

Then, for arbitrary 11) or uj (12 the condition (14) yields a strong
continuity for stress components

-(1 _ S(2) = 0. (22)

Similar results can be readily obtained for the rest of the interelement

boundaries. In suimmary we may write the following set of interelement
equilibrium conditions

S(11) S(21) 20 S(21) S(2~2) 0

S(21) S(11') = S (22) S(12) =0 (23)

and

ii~ M1  i~S )(ui 2 +U13) =0

These are identical to the stress continuity relations developed by
Aboudi [41 when element-wise constant approximation is used for the
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stress field. Note from Eq. (16) that the traction boundary conditions

are satisfied in the strong sense.

3. Finite Element Formulation

The equation (16) for a subcell (sy), in view of equation (17), reduces

to

(BY) 1 (By)M( ~ (By) d+ (By) n(By)o U(By~d (24)
Y - f ij ijkt i da '3Yf ii j 6 k r

Equation (24) can be readily cast in a matrix form when the following
vectors are defined:

i(y 17 (y). (By). (By), (By) a(By), (sy),T

11 22 933 012 913 0231(5
and

[{O ) u(BY (By (By) uY (By) (By

The additional index variables, 4 ikI' n j and e k can be also organized
in matrix forms in accordance with definitions (25). The matrix form of

(25) for constant approximation of o0 OY) equal to S (OY) has the form

f(y a -.. (B)SYTMB)s()}+{B)I[H(8Y)Iju(OY)l (26)

where IMBYJ is a (6 x 6) matrix of the compliance moduli of

the (By) element and (Noy] is a (6 x 12) matrix of

f n(OY)e(BY)dr(BY)

rBY
coefficients.

Since the components S(BOY) in the vector {5(B'r)} are internal toi
each (sy) element, they can be eliminated from the mixed varational
principle (16) by a variation of the functional 11(B') with respect
to S(Y in each element:

(0y (OY {OY j(OY)} + HBYI~u(By)l 0 (27)
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For invertible [A(Y)J, we can immediately write

{S(OY)} = IMIOY)]- 1[H(Y)J{u(BY)} (28)

Equation (28) establishes the relation between the originally indepen-

dent fields aO ) and u iOY) in (13) and (16). Note that an explicit
form of the relations between o(OY) and u(Y) can be obtained when one

organizes the components of the matrix [H(BY) ] back to the subscript
notation before the integration along r(BY) Is applied to [Hey]. It is

easy to show that for the constant approximation of iJ the relation

is as follows:

O(BY) (M(Y)-l I (u(Y)+ u(SY)) (29)
iJ ijk 2 ij J,i (

This result confirms the fact that, for constant O Y) the zeroing of

the first volume integral and the interelement surface integrals in (16)

transforms the mixed formulation (16) into a complementary energy or

minimum stress rate variational formulation.

4. Homogenization

In this section, the finite element homogenization procedure developed

by Teply and Dvorak ([5] and [81) is used to imply Aboudi's solution of

overall (homogenized) properties with the solution of the overall
properties via the mixed finite element functional (16). The Teply-

Dvorak homogenization procedure is based on the comparison of unit cell

energies. The energies considered in the comparison are the energies of

the periodic and homogenized microstructures. Using the finite element
method, both unit cell energies are expressed in the form of quadratic

functions of contact point displacements. The quadratic functions are

compared and homogenized properties calculated from the equivalence of

the contact point displacements. The homogenization procedure has been

developed for the Periodic Hexagonal Array (PHA) model described in

[51. A detailed explanation of the two concepts can be found in [81.

The contact points are defined as the points in a at which the

displacements of the homogenized material are equal to the displacement

of the periodic microstructure. At the same time the boundary r is

subjected to the conditions corresponding to a uniform stress or strain
field. For the variational principle (16), where r - rt, the boundary

tractions are
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t= Ofn (30)

where a~j are the components of the uniform stress field in a. It will
be shown that the selection of the subcell centroids as the contact
points yields Aboudi's homogenization equations for displacements.

Suppose that a is a homogenized medium subjected to the boundary
conditions (30). The displacement components uo are then linear
functions of x1, x2, and x3. The linear functions ui can be readily
expressed in term;, of the finite element interpolation functions when,
for example, the contact points are selected as the nodes for uI. This
approach has been used in [8]. However, in the present study it is
advantageous to select four vertices of a unit cell (see Figure 4) as
the interpolation points, and derive the displacements at the contact
points (the centroids of the By-elements) from a linear combination of

the four vertex displacements uik. Note that the contact points are
also not nodal points in the finite element mesh for the periodic
microstructure.

Assuming the four vertices of the unit cell to be the nodal points, the

interpolation functions for uo can be written as

u = ekukt i = 1,2,3 (31)

where
0 h _Lt2 - h2tl 1 1 1 x

61 (hI + h2)(t1 + 12) d 1 x hl,+ h2 x2 1 2

o0 11 1 x3

ti 2 11  2  x(32 )
0 h2  1
3 hi + h2 +h + h2x2

0 l1
64 1

The origin of the coordinate system (xl,x 2,x3) is taken at the
intersections of the four subcells (see Figure 4).

The equality of displacements uO and u, at the contact points isu1 aduiahhecnatponsi

readily obtained when we substitute

x= 0, x2 - (-1)(B-)h /2 and x3 = (-1)yt1/2

II
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3X

2

Nodal Points for Homogenized Material
Figure 4
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in uo [see equation (31)], and

x=o. 7B) = o and y -)

in y) [see equation (2)]. The equations of the displacementin

equivalence at the four contact points are:

hl12 - h2'1  hl 1 1I

I(h + h2)(t1 + Z2
) - 2(hl + h2) + 2(£I + 2)7 Ull

1 ? u + 2h2 + hI U? = 1 (U 1) + U)

+ 2( 1 +2 + Y 12 ( + h2) U3 2 (2

h1 2 + h2 1  h2  1 0

(h1 + h2)(1 + '2) 2(hl + h2) 2( 11 + £2) Nil11+ 2+ 7i+ h2

+(11 u 2 + h2  
u13 = 1 (u(21) + u(2 )

2+ 2 h + h2  i2 1i3

hl 2 - h211  hl £2
[(h + h2)(I +12) 2(hl + h2) - 2(1 + £)]i1

+2£i +2 t 0 + 2h + h1  = ((2+
1 + £2) 12 2(h, + h2) U3  U1

h112 - h2£1  h2  Z2 o
[(h1 + h2)(t1 + t2+ 2(hl + h2) - 2(,1+ '2lU ll

2£1 + 12 0 h2  o 1 (22) +

+ 12) 12 2(hu + h2) Q 2 3
(33)

Equations (33) can be cast into Aboudi's notation when the following
relations are considered.

w = U0

i

awi 1 ( o +u i  (34)

ax2  h1  1h2

3x3  1£ +12 (u21  u1j)

I I  i

r
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Since displacement wI is continuous in a, we can define the projection

of wI on a subcell (By).

w0Y = (35)= Wi,

when x2 and x3 in (22) belong to U(Sy) and its boundary r
(OY). Equation

(35) is a natural condition for the assembly of the homogenized unit
cells in a. The displacements wiy must be continuous in a and can be
derived from a single function wi. Equation (35) is a mere consequence

of the u? definition - uo is defined continuous and linear in a.
Nevertheless we include Eq. (35) in our paper to establish a complete

equivalence between the contact point approach and Aboudi's
formulation. Note that in Aboudi's work (35) represent the constraint

equations for the homogenized displacement wi to introduce the
continuity of wi in a. The Aboudi's constraints for the derivative

of w(y (34) can be derived from the equivalence of contact point
displacements (33). For example, subtracting the second equation (33)

from the first one, we obtain

0 o u(1) , u(1) _ u(21) u(21) (36)u 3 u- u 12 3 i2 - 3

where u'11) and ui3 are nodal displacements at the common node betweenU2 13 ul(11) and (21) elements. Notice that displacements u(I )3 and are
i3 12 ar

the displacements at two different nodes; the former is the displacement

at the midpoint in the upper edge of the (11)-element and the latter is
the displacement at the midpoint on the lower edge of the (21)-element

(see Figure 2). Hence, the connectivity equations (3) can be applied

only to u"i2 and u1). The application of the first connectivity
equation (3) yields

o o , ( 1) _ I) ,(0l) _ (21)ui3 - ui = u"3 u 1  + u"i3 - ui21  (37)
i3 1 13 1 2 13 12

which, with the aid of Eqs. (34) and (6), can be cast in Aboudi's form

awl = hl (11 + h2 02)(8

ax2 h h 2  i
11  hi +h 2  i (38)

Similar result is obtained when the fourth equation (33) is subtracted

from the third one to yield,

aw1 = hi (12) h2  (22).
(39)

axh+ 2 I J .-
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The derivative of wi in the x3-direction is determined when the third

equation (33) is subtracted from the first one. The equivalence of the

contact point displacements yields:

u°  u 1  + + (40)

(12 12 12

Expanding the righthand side of Eq. (40) by 2u(1
2  - and using

the second connectivity equation (4), equation (40) takes on the

following form

u o = u(11) + (11) -2(11) + (12) , (12) -2u 12) 41
2- u11  u12  + u 3  i2  + ui3  (41)

Equation (41) can be changed to Aboudi's constraint equation when Eqs.
(34) and (6) are used:

aw1  11 ,(11) + '2 ~(12) (2
ax3  t11 +2 1 + 42  )

The last constraint equation is obtained when the second and fourth

equations (33) are considered:

awi 1 1 ~(21) + Z2 (22) (3ax3  'l 2  + Z1 + 12

In summary, we can conclude that the derivation of equations (35), (38),

(39). (42) and (43) has shown that the kinematics of the finite element
formulation is identical to the kinematic equations of Aboudi's model

when the concept of contact points is applied at the subcell centroids

and linear shape functions (2) and (31) are used for the displacement

functions in the subcells and homogenized unit cell. Using Eq. (33) it

can also be shown that the overall strains in Aboudi's model are simple

weighted averages of two or three local strains, ! (u(8Y)+ U(SY ) )

2 ij ji
Although the derivation of weighted averages for the strains in

homogenized material is straightforward, it involves tedious algebra

which falls outside the scope of this paper. For that reason only the

final results are summarized. From equations (2), (3), (4). (20), (28),

(31), (32) and (33), and assuming the following definitions

(BY) - H(OT)u(OY)"ti jkt 4t

(44)
0 1o . (uoj + uj i)
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whr (6y) aet
where ")ijk are the components of matrix [H(BY)) defined in (28), one

can calculate eiJ as follows

o (ad)
£11 = 1

o hl (11) , h2  (21) hl C(12) , h2  (22)
E22 h1  h 2£2 + h1 +h2  22 =h1 h 2  22 h1 + h2  22

0 t1 (11) t2 (12) t1 (21) 12 (22)633 ! _z1  2 F-33 + '1 T 2 E33 = Ti + 2 E33 + t1"+ 2 33

o h1  C(11) + h2  C(21) h1  (12) + h2  C(22)
12 =h- 2 £12 + 1  h2  12 hI + h2  12 h1+ h2 £12

0 '1 (11) + 2 (12) ti (21) + 12 r(22)
C13 + 2 C13 + t1 X 32 13 1 +-T2 13

(45)

and for h2t1 = h1t2, we have
o h1 1  + (11) + h2 2  (21)

£23 (h1 + h2)(z1 + '2) £23 (h1 + h2)(£1 + t2) £23

(h1 + h2)(I +2
)  £23 (h1 + h2) 1 + h2) 23

+ h2"2  - (22) + h2 , (21) +(22))

(hi + h 2)(El + 2T £23 (h1 + h2)(t1 + z2) (23 + 23

The requirement h2t1 = h,'2 may not be generally satisfied in Aboudi's

model, but for most model applications the rectangular fibers and unit

cells can be arranged such that the above requirement is satisfied. For

example, when the ratio of fiber sides, z1 and hl, is equal to the ratio

of the unit cell sides, (£1 + 12) over (h1  + h2), the geometry

requirement is satisfied. Equations (45) are special forms of strain

volume averages specific to Aboudi's geometry. The integral form of the

strain volume averages can be readily derived from (45). For example,

consider the second equation in (45) and multiply its right hand side

with ('1 + 2)/( + 2)

[ :/. . : ::>, :Y
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0 hlt2 (12) + h2t2  (22)
e22 = (h1 + h2)(t1 + T2) r22 (hI + h2)(t1 + t2) £22

11 hi (12) h2  (22), (46)

+1 1 2 (h 1+h 2) £22 + (h1 + h2) 22 )

The term in parenthesis is equal to the lefthand side of the second

equation (45). Substitution of the lefthand side from (45) yield the
integral form of the strain volume average

0 h2l (11) + h2'1 (21)
£22 = (h1 + h2)(11 + t2) 224+ (h1 + h2)(1+ t2) £22

+ h2 (22) + h 2 (22) (47)
(h1  + 2) 622 (h1 + h2)(i +- 72) e22

Similar expressions can be obtained for the other strain components.

Strain volume averages (45) suggest that the subcell strain
components i(BY) are not independent. It can be seen that three strain

ij (11) (21) (12)
components, for example £1j 0 Eij and Eij , are sufficient to

calculate the overall average ij, and also to determine the fourth

strain 21) . This feature of Aboudi's model is specific to the

selection of the model geometry - rectangular unit cells containing

square or rectangular fibers. The strain constraints (45) are also the
result of the small number of subcells (four) in the unit cell. It will

be shown that the constraints (45) can be relaxed when fiber cross

section is approximated by a n-sided polygon and the number of subcells

is increased.

Having established the identity between the kinematics of the mixed
finite element formulation (29) and Aboudi's model, we shall now derive

the equivalence between overall properties calculated via Aboudi's and

the finite element approach. For that purpose we shall use the above

derived kinematic relations, and apply them to the derivation of the

contact point displacement quadratic forms of the unit cell energies for

the homogenized and periodic microstructures. In the course of our

derivations, it will be shown that the Aboudi's and the finite element

model yield identical equilibrium equation In terms of the global and
local displacements u0 and u101). respectively.

First, let us consider a unit cell of the periodic microstructure. In

order to develop the unit cell energy quadratic form, unit cell boundary

conditions must be derived. In accordance with the overall boundary
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conditions J30) and variational principle (16), the stress
t y), of the unit cells located on the boundary r of a must

be equal to

o(By) 0
GiO . 0 (48)

Substituting the stress approximation coefficients S(OY) in (46), and
ij

assuming the strong continuity of S(By) cross the interelement

boundary r (see Eqs. (22) and (23)], one can immediately write the unit

cell boundary condition in the form of the subcell stress coefficients

SOY) =o (49)

Substitution of Eq. (49) in (28) introduces the overall boundary

tractions (30) in the finite element formulation

1o ol IH(Y)-l H(oY)I{u(BY)} (50)

The last equations can be, with the aid of Eqs. (6) and (35), cast in

Aboudi's notation. First, let us use Eqs. (6) and (35) to define a

matrix NO Y)) by

aw(BY)1O. 0
axI

00y) 0

0. 0 V(S- )

IG(By)l = H(oY)jlu(BY) =3

1 ax1  0

.y) .3
1 x

0 TOBY) O y)
2 3

(51)

Substitution of Eq. (51) in (50) yields the final transformation

equation between the finite element model and Aboudi's formulation

fool 1 ((52)

, ... . !; i! i .
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This equation relates the overall stress components 00 to Aboudi's

displacement functions WIBY # nYO In Aboudi's model,

Equations (52) together with (35), (38), (39), (42) and (43) are used In

the selection of a set of solution equations to determine a specific

elastic stiffness modulus or the stress-strain curve for a specific

nonlinear loading path. For example, assuming fool equal

to [0,0,,102,,0}, a set of equations can be selected from the matrix

equations (52) and the above mentioned kinematic constraints (35), (38),

(39), (42) and (43) to calculate either the longitudinal shear modulus

or longitudinal shear stress-strain curve of fiber reinforced

composites. A comprehensive review of various solutions of (25), (32),

(39), (42), (43) and (52) is given in 19].

It has been shown (see Eq. (28)], that Eqs. (50) and (52) are two

different forms of the stationary condition for the mixed functional

(16). The stationary condition (28) is calculated with respect to

the 6Sij variation of the functional. It can be also shown that for the

homogenized material, the kinematic constraints (35), (38), (39), (42)

and (43) are the stationary conditions of the mixed functional (16) with

respect to 6uij variations. It means that the solution of Aboudi's

equations is equivalent to the stationary points of the mixed functional

(16) when the linear interpolation functions are used for
u!8Y), and uo; and o(' Y) are approximated by an elementwise constant

functions SO . Thisconcludes the unification of the finite element

and Aboudi formulations.

In Aboudi's formulation, different equations are used to solve the

stress-strain curves for two different loading paths. Such arrangement

can become inconvenient for solutions of nonlinear problems with a

nonproportional loading path in the oij-space. Therefore, it is

advantageous to continue our derivations and use Teply-Dvorak's method

to derive the instantaneous overall stiffness moduli from the

equivalence of two contact point displacement quadratic forms.

In order to develop the quadratic form for the periodic microstructure,

it is necessary to construct transformation matrices between nodal

displacements u(y) and contact point displacements aIL (I

1,2,3,4). The transformation can be written in a matrix form when the

following vectors of nodal and contact point displacements are defined

{a (21) a(21) a (21 ) a(22) a(22) a(2
2 ) a(1 ) a(11 a(21)

11 21 31 12 "22 32 13 33 14

.<' .,

- ' l ed lll•••mli l
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a(21) a(21) T24 ' 34

and

(B) (1y) (1)

Ju (11 .U ' (11),ul).(21) .(21),u(31), (11)U(ll),U(ll)

wher a 1 11  "21  I31 = 11 ar21 h31 c31 32 h33

u(11),u(11) .(11) u (21) .(21) of. elemn (21), ( 22) and21 22 "23 "21 "22 "23 '31 '32 "33

U(12) (12) (12) (22) (22),U(22),u(21) ,(21).U(21)}T
21 -22 -23 -21 -22 ,23 41 ,42 -43

(53)
where ai(OY)'"i(8Y)' i(OY) 0i = 1.2,3) are the displacements at the

centroids of the bottom surfaces (xI - 0) of elements (21), (22) and
(11), respectively; displacements a(21)a

a41  are at the centroid top surfaces
(x1 = d) of the element (21) (see Figure 5). Notice that according to

the connectivity equations (3) and (4) different nodal
displacements u(sT can be used to define the same vector {u}. Assuming

ik
that the rigid body motion of a unit cell is restricted, then there

exist matrices [T] and IT(BY)I such that
{u} [TItal

{u(BY) = [T(BY)I{al. (54)

where, according to the second definition (25) and equations (3), (4)

and (20), {u(BY)J are vectors from subspaces of the vector space {u}.

It means that [T 01)] is a certain submatrix of [TI.

Matrices IT] and [T(BY)I can be derived by several means. Thesimpliest

approach is illustrated in Figure 5. The influence

function, {a( Y)l} = {,0,0.... O}T, is constructed to derive the first
columns of [TI and other four matrices [T(B Y)J from the displacements at

the connectivity pnints. Similar procedures can be used to calculate

the coefficients of the other eleven columns in [T] and [T(BY). Such
displacement functions uBly) are linear and they satisfy the

connectivity equations (3), (4) and (20). A subspace of the vector

space Jul can be found such that [TI and IT(BY)l are uniquely defined
and invertible. For example, the subspace can be defined by the

following vectors
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(11). (11), (11) .(21) .(11), (11)
{ua} = {u31 ,u32 ,u33 "21 '22 "23

(12), (12), (12) .(21) .(21) .(21)IT (55)21 2 3  ,u41 4 '4 2  u43

The remaining coordinates of the vector space {u} define
vectors [Ub} from the subspace which are complemenetary to {u.1 in the

vector space {u}. It can be shown that {Ua} {UFI and the first equation

(54) is equal to

u.= [:Pa 
(56)

ub  0

In accordance with the definition of the subspace {ua}, the rest of the

transformation equations (54) can be written in the following form:

uaB6Y)j al{u ) = {a} (57)

where [t(OY)J are certain submatrices of [t].

Having derived relations between {u(BY)}, {UjBY)} and {a}. we may now

approach the final steps in the derivation of the energy quadratic

form o(OY) [see (26)].

First, we substitute {u(BY)l and {UJBY)1 in (28), and use the result to

cast the matrix of ni( B) in the form of a quadratic function of the

nodal displacements, {uJOY)} and u(uY)j.

i (0y) .I [~yj~ ~yj
= 1{u ))l KY)I (58)

a b 0 fu(Y))

The functional (58) can be varied with respect to the nodal

displacements {u(OY)}. The variation yields:

b~

6 -
(oy)  IK( 1Y)]  {u BY)} "0} (59)

Q Y)}

t" .
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where [K(OY)] is a submatrix of [Ko y)].

Note that {u(O Y)} and {u(OY )} in (59) satisfy the boundary equilibrium

condition (28) and the connectivity eqations (3), (4) and (20). The

free nodal displacements {u Y)I} can be determined from (59) as

functions of 
fu OY)}:

{u( BY)} = [R(OY)Jfu(BY)} (60)

This result can be substituted in Eq. (58) to reduce n( 'Y) to the

quadratic form containing only {u($Y)" displacements. The substitution

of {a} for {ua ,Y) from (57) yields the final form of n(y):

n(BY) = {a}TIK(Y)1{a} (61)

Note that [K(BY) ] in (61) represents the energy contribution of

the (sy)-element to the entire assembly of a unit cell because the

connectivity equations together with the transformation (57) represent

the typical finite element assembly procedure for the (oy)-elements.

The total energy for the unit cell is readily obtained when the sum

of n(11),n( 21),n(12) and n(22) is calculated

n = 1 [alTIK]al (62)

The procedure similar to that used in the derivation of (62) can be used

to derive the energy no of the homogenized unit cell in the terms of the

contact point displacements {al.

The simplest way to derive the quadratic form of n0 is to consider the

entire unit cell as a single finite element and apply the results of

Section 2 and the displacement interpolation functions (31). Without

going into the detials of required algebra, the matrix form of the

homogeneized unit cell energy n0 can be written as follows:

n- {aiT[HolTMFl[-lHo]{a) (63)

Vector {a} in (62) and (63) consists of the twelve contact point

displacements [see definition (53)]. These displacement characterize

general motion of the unit cell, including the rigid body motion. The

N'
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rigid body motion must be eliminated from the unit cell

energies n and not in order to obtain a unique solution of [Mo )- . To

accomplish the rigid body elimination, the unit cell can be supported in

three points in such a way that six displacements a(yfrom {a} are equal

to zero. It has been shown by Teply and Dvorak [51 that the rigid body

motion elimination yields an invertible matrix [Hol. After the

elimination of the rigid body motion, the equivalence of (62) and (63)

carries a simple formula for the calculation of overall moduli.

1 T-1  _
[Mo ]  [Ho] [l [Ho1 (64)

For boundary conditions (30), ([o-' is equal to overall stiffness

matrix [Lo). Note that a different [Lo] would be obtained when

displacement boundary conditions are assumed, see [5). For nonlinear

problems, energy increment an and An0 must be used in derivation of

(64). It is simple to show that the comparison of An and Ano yield the

same result (64) when instantaneous local moduli are considered in the

derivation of [KI. In order to calculate the instantaneous local moduli

in By-elements, it is necessary to establish relation between traction

increment ati and displacement increments au(k , and ak(aY). The

former is readily available when (50) is transformed to an incremental

form. The latter is obtained when (60) and (57) are first transformed

in incremental forms and then substituted in the incremental form of

(50). Finally, the incremental form of (49) must be used to obtain:

{AS(BY) } = -I [M{(BY)F[H(BY)1{AubYl
or

{AS(Y)} = (-- ) [M(BY)1I[H(8Y)I[RBY1[tBY1{aa} (65)

where [M((y)p -I is the matrix of instantaneous stiffness moduli in

the (By)-element, and

At* =a jnj - AS(Y)nj (66)
ii iJ j

Equation (64) and (65) are extensions of Aboudi's model to arbitrary,

nonproportional loading paths for elastic-plastic and viscoplastic

composite materials. Equation (64) can also be used to show that

Aboudi's model supplies lower bounds to the actual stiffness modull.
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5. Discussion of Results

It is shown that, for Aboudi's representative cell and microstructure,
the finite element formulation results in the overall stiffness moduli

[Mo]- that is identical to that of Aboudi. It has also been shown that
the use of the Teply-Ovorak's concept of the equivalence of the contact
point displacements [51 yields the solution of 1Lo or [Mo]-' in the

same matrix form as it is used in the Periodic Hexagonal Model.

Since the Hellinger-Reissner variational principle is also used in the
PHA model to establish bounds on elastic and elastic-plastic instan-

taneous overall moduli, it is possible to determine the relationship

between Aboudi's approximation of [MoQ- 1 and the actual stiffnesses
[M*] I of the periodic microstructure. In both models, PHA and
Aboudi's, the two independent variables - stress and displacement - are
related in such a way that the Hellinger-Reissner principle is trans-

formed in the complementary energy or minimum stress rate principles.
The relationship between stress and displacement fields in the Aboudi's

model is shown in (28). It is shown In [51 that for the minimum stress
rate principle and the boundary conditions (30), the following
inequality is valid for the coefficient of diagonalized matrices [Mo ]
and IN*]

diag m, s diag moi (67)

where m are ordered eigenvalues of [M*1 and moi are ordered eigenvalues

w
of [NO]. For detail derivation of (67) see (5]. Equation (67) shows
that the diagonal coefficients of Aboudi's compliance matrix, diagIM 0],

are always higher than the coefficients of the actual compliances

diag[M*1. If overall stiffness [Lo] is equal to Mo]-1, one can readily
relate the stiffness moduli diag[L o] to diag[L 1,

diag toi s diag t (68)

In summary, it has been shown that the stiffness and compliance moduli
calculated via Aboudi's model can be used as lower and upper estimates

of the actual moduli of fibrous composite.

It is also shown in [51 that bounds on elastic or elastic-plastic
instantaneous moduli can depend on the model microstructural properties

such as fiber shape and fiber arrangement in a periodic array. It has
been shown In 1101 and 1111 that fiber shape and fiber arrangement have
a pronounced influence on the estimates of overall stiffness or
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compliance moduli [Lo] or [Mo]. For example, it is shown in [101 that

different elastic-plastic solutions are obtained when hexagonal,
dodecagonal and higher n x 6-sided polygons are used to approximate

circular fibers in the PHA model. Similar results are expected for

square oT rectangular fiber arrays used by Aboudi's.

In order to estimate the effect of fiber shape approximation on Aboudi's
estimates of overall mechanical properties [Mo ] and ILoj, Aboudi's unit

cell has to be redefined. The change in the selection of the unit ceil
is necessary because the rounding of the fiber element (11-element)

would ask for different connectivity equations (3) and (4) to account

for the periodicity of the displacement in Aboudi's model. The periodic

conditions for the displacement can be preserved and the approximation

of circular fibers by n x 4-sided polygons readily introduced to
Aboudi's model when the unit cell vertices are shifted to the fiber

centroids as shown in Figure 6. It is probably obvious to the reader

from the derivations of (3), (4) and (33) that these kinematic equations
remain unchanged for the new unit cells. Additionally, the boundary and

interelement equilibrium equations (30) and (22) are also preserved in

this unit cell. Since both kinematic and equilibrium equations are

preserved, matrices IKI, [Hol and most importantly [Mol-1 must be
identical for Aboudi's and the new unit cell.

Having established the identity between Aboudi's and the unit cell

defined in Figure 6, we may now approach the approximation of circular
fibers by n x 4 sided polygon or even by arbitrary n-sided polygon. The

simplest extension of Aboudi's square or rectangular fibers is to

octagonal fibers. The unit cell with octagonal fibers is shown in
Figure 7. For this unit cell, the connectivity equations (3), (4) and

(20) remain unchanged; the displacement compatibility at the contact
points (33) and the boundary interelement equilibrium equations (30) and

(22) must be reformulated in terms of new shape functions

for (ey)-elements. The reformulation is simple and straightforward.
Note that matrices H(BY) must be changed, but [Ho remain the same as

for Aboudi's unit cell.

The addition of more sides to the polygonal approximation of the fiber

cross section is asking for more subcells in the unit cell. The
subdivision of the unit cell into more than four subcells leads us to

the outside of the framework of Aboudi's model and bring us closer to
the finite element convergence studies used for the PHA model in 1101.

In such convergence studies, Aboudi's model or its extension to

.. ..- , 3lll m m m
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octagonal fibers may serve as first estimates for elastic-plastic or

viscoplastic instantaneous moduli.

References

1. Hill, R., "Theory of Mechanical Properties of Fiber-Strengthened

Materials," J. Mech. Phys. Solids, Vol. 13, pp. 189 (1965).

2. Hashin, Z. and Shtrikman, S., "A Variational Approach to the Elastic

Behavior of Multiphase Materials," J. Mech. Phys. Solids, Vol.

10 p. 343 (1962).

3. Dvorak, G. J. and Bahei-El-Din, Y. A., "Elastic-Plastic Behavior of
Fibrous Composites," J. Mech. Phys. Solids, Vol. 27, p. 51

(1979).
4. Aboudi, J., "A Continuum Theory for Fiber-Reinforced Elastic-

Viscoelastic Composites," Int. J. Engng. Sci., Vol. 20, p. 605

(1982).

5. Teply, J. L., and Dvorak, G. J., "Bounds on Overall Instantaneous
Properties of Elastic-Plastic Composites," J. Mech. Phys. Solids,

Vol. 36, No. 1, pp. 29-58 (1988).

6. Reddy, J. N., Energy and Variational Methods in Applied

Mechanics, John Wiley, New York (1984).
7. Reddy, J. N., An Introduction to the Finite Element Method,

McGraw-Hill, New York (1984).
8. Teply, J. L., "Periodic Hexagonal Array Model for Plasticity

Analysis of Composite Materials," The University of Utah, Ph.D.

Oissertatin, 1984, University Microfilm International-8409545.

9. Arenburg, T. and Reddy, J. N., "Elastoplastic Analysis of Metal

Matrix Composite Structures," Virginia Polytechnic Institute and

State University Report, CCMS-89-02, February 1989.
10. Shah, R. and Teply, J. L., "A Final Element Convergence Study of the

Periodic Hexagonal Array Model," Alcoa Division Report 57-89-32,

Alcoa Laboratories, PA 15069, November 1989.

11. Brokenbrough, J. R. and H. A. Wienecke, "Constitutive Response of

Continuous Fiber-Reinforced Metal-Matrix Composites: Effect of
Fiber Shape and Spatial Distribution," Alcoa Division Report 57-89-

35 Alcoa Laboratories, PA 15069, December 1989.

,.



Inelastic Behavior III



A Micromechanical Composite Yield Model
Accounting for Residual Stresses

C. T. Herakovich, J. Aboudil and J. L. Beuth, Jr.
Civil Engineering Department

University of Virginia
Charlottesville, VA 22903

Abstract
An analytical micromechanical model is used t(. predict yielding in

continuous-fiber unidirectional metal-matrix composite materials. The von
Mises criterion is used to predict yielding of the composite matrix based on (1)
the average stresses in the matrix, and (2) the largest of the average stresses in
each of the modelled matrix subcells. Two-dimensional yield surfaces are gen-
erated under thermomechanical loading conditions for two metal matrix compo-
sites, boron/aluminum and silicon carbide/titanium. Results indicate that,
depending on the material, temperature excursions typically experienced in pro-
cessing may cause matrix yielding at zero far-field applied stress. The analysis
shows that thermal stresses distort and shift the yield surface based upon subcell
stresses. Thus the importance of micromechanics is demonstrated.

1. Introduction

The ability to use metal matrix composites at high temperatures is one of
their important advantages over resin matrix composites. Since the metal matrix

is an elastoplastic material, it appears that the prediction of the overall yield sur-

face of the composite is a fundamental step toward the study of its behavior.
Yielding of the composite is caused by the yielding of its metal matrix. The

prediction of the initial yield surfaces of metal matrix composite in the absence

of thermal effects was presented by Pindera and Aboudi (1988). It was shown
that yield surfaces generated on the basis of the average matrix behavior gen-

erally underestimate initial yielding as compared with predictions based on local

matrix stresses and that the results obtained on the basis of local matrix stresses

correlate very well with finite element predictions of Dvorak et al (1973). The

approach presented by Pindera and Aboudi (1988) is based on the

micrornechanical model of periodic array of fibers which was recently reviewed

by Aboudi (1989). This micromechanical approach is analytical and requires

minimal computational effort, while offering the ability to model generalized

'Visiting from Tel Aviv University, Tel Aviv, hrael
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loading conditions. In the case of metal matrix composites, the prediction of ini-

tial yield surfaces can be easily carried out with minimal effort.

In the present paper, initial yield surfaces of metal matrix composites at

elevated temperatures are gen.rated on the basis of the above micromechanical

model (the method of cells) under a variety of thermomechanical loading condi-

tions. The effects of the presence of residual stresses on the initial yield sur-

faces of the composite are studied. It is shown that depending on the applied

stress state and temperature loading, the residual stresses will cause a translation

of yield surfaces coupled with changes in size and shape. Furthermore, depend-

ing on the material combination and temperature excursion experienced in pro-

cessing, the matrix may yield at zero far-field applied stress. Predictions based

on the average stresses in the entire ductile matrix are also given for com-

parison.

2. Micromechanical Model

The geometry of the micromechanical model analyzed by the method of

cells is illustrated in Fig. 1. The fiber of the composite extends along the 1-

direction. A representative volume element of the composite consists of four

subcells. Subcell (f3 = 1, y = 1) represents a single material fiber. Subcells ([3, y
= 1, 2 ; y +* 2) represent the surrounding matrix material. The overall

behavior of the composite is obtained by imposing continuity of displacements

and tractions between subcells and neighboring cells on an average basis.

Assuming perfectly elastic fiber and matrix materials, the following ther-

momechanical constitutive equation can be established for the overall behavior

of the unidirectional fibrous composite (Herakovich et al, 1988)

a=Ee-UAT (1)

where a and e are the average stresses and strains in the composite, AT is the

temperature deviation from a reference temperature at which the composite is

stress-free when the strains are zero. In (1), E is the matrix of the effective

stiffnesses of the composite which represents its overall transversely isotropic

behavior, and U is a vector which incorporates the thermal effects. All materirl

properties are considered temperature independent in the present analysis. The

explicit form of E and U can be found in Aboudi (1989).

It can be easily verified that the predicted effective moduli are in excellent

agreement with those computed from elasticity analysis for glass/epoxy and

graphite/epoxy systems (Pickett 1968, Chen and Chang 1970, Behrens 1971).

w tmi, m H i lli i
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a) Double Periodic Array b) Representative Unit Cell

Fig. 1. Method of cells model

Such comparisons are presented in Figs. 2 & 3. Furthermore, as shown in Fig. 4,
the effective transverse shear modulus of a unidirectional glass/polyester com-
posite as predicted from the present micromechanical approach, coincides with
the corresponding modulus computed from the three phase model (Christensen
1979). Also shown in the figure is the lower bound as predicted by Hashin &
Shtrikman (1963) for arbitrary phase geometry. These comparisons are signifi-
cant since the prediction of the transverse shear modulus or, equivalently, the
transverse Young's modulus, of a unidirectional composite provides a critical
check for the validity of a micromechanical model.

Let S" represent the average stresses in the subcell (0y). It is possible to

relate S" to the average stresses oq, and the temperature deviation AT. The
resulting equation can be represented in the form

S(ft = B(ft 5- V(" AT (2)

The elements of the concentration matrix B(" and vector V(" can be readily
determined from the micromechanics analysis. Assuming that yielding of the
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Fig. 2. Theoretical comparisons for elastic properties of unidirectional glass/epoxy.

matrix is governed by the von Mises criterion, it follows that yielding of the

composite occurs when the von Mises condition in any given matrix subcell is

fulfilled. This requires that

f(S 2 0 0 - 1 = 0 j3++y*2 (3)

where Saj is the deviator of S", and Y is the yield stress of the matrix in sim-

ple tension. When the average stress in the entire ductile matrix is employed for

the prediction of the composite initial yield surface, S(" in (2) - (3) should be

replaced by the matrix average stresses. These are given by

~7 [h II h2(S AII2) + 8(1') ) + ItS~) / (2h, h2 + h(4ij ) 2 q2 2"/ + (4 )

Consequently, eqn. (2) will take, in this case, the form-"0) = B(-) -V-') AT 5
Cr (5)

and yielding of the composite occurs when

_uN_ _ _
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-No~)= 2 ~ I 0 _. ) y2=o (6)
f(a'j. T=c~ O'JJ C j 4 03

where aij is the deviator of aj

3. Results

Initial yield surface predictions are given for unidirectional metal matrix

composites at room and elevated temperatures. The yield surfaces are generated
on the basis of the largest of the average stresses in the matrix subcells as well
as on the average stresses in the entire matrix. Two types of metal matrix com-

posites are considered, boron/aluminum and silicon carbide/titanium (SCS-6/
Ti-6A-4V). The properties of the four constituents are given in Tables I and 2.

The fiber volume fraction, vf, was equal to 0.3 for all calculations. All results
were obtained using a user friendly, interactive PC software package (Herako-
vich, et al, 1988).

14- GRAPHITE/EPOXY14

12

{6-

4-
-. " ---- elasticity

2- (Behrens, 1971)
present model

0 0.2 0.4 0.6 0.8 1.0
Vf

Fig. 3. Theoretical comparisons for elastic properties of unidirectional graphite/epoxy.

. " 44;[
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50 GLASS/POLYESTER

-- present model
40 ....... 3 phase model

(Christensen, 1979)

lower bound
(Hashin & Shtrikman, 1963)

o30O

20;

10 .I

0
0 0.2 0.4 0.6 0.8 1.0

Vf

Fig. 4. Theoretical comparisons for transverse shear modulus of unidirectional glass/polyester.

For the given material constants and fiber volume fraction. the

micromechanics model readily provides the temperature changes which cause

yielding of the matrix phase of the unidirectional traction-free composites.

Table 3 presents values for the temperature increase from the stress free state to

Table 1. Material properties of boron fibers and aluminum matrix.

E (GPa) v Y (MPa) a (10 - /-C)
Young's modulus Poisson's ratio yield stress coeffident

thermal exp.

Boron 413.6 0.21 ... 8.1

Aimidnum 68.9 0.33 262 23.4
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Table 2. Material properties of SCS-6 fibers and Ti-6A1-4V matrix.

EA(GPa) +  VA E (GPa) VT

388.8 0.133 394.3 0.147
SCS-6

GA(GPa) Y (MPa) cg(10-/OC) r(1OI/°C)

142 5 4.6

EA(GPa) VA Fr(GPa) V

110.3 0.31 110.3 0.31

TI-6A14V

GA(GPa) Y (MN) UA (10-/OC) UT(10-//0C)

42.1 903 8.69 8.69

+ (subindices A and T denote axial and transverse directions)

cause yielding as predicted by both methods employed and for both materials
under consideration. It can be readily noted that the predicted values provided

by the two methods are quite different This leads to the conclusion that the use
of the matrix average stress for the prediction of yielding of metal matrix com-

posites at elevated temperatures may lead to significant error. Clearly, some
composite materials may have significant residual thermal stresses at room tem-

perature. Depending upon the constituents, these residual stresses may actually

cause yielding of the matrix material. Specifically, the ratio of fiber and matrix

coefficients of thermal expansion and the ratio of the fiber and matrix elastic
moduli play strong roles, as does the yield stress of the matrix. For example, the

results in Table 3 indicate that l/M yields at a much lower temperature than

SCSr,-6A--4V. Indeed, the temperature change required to cause yielding in the

two material systems differs by an order of magnitude.

77
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Table 3. Temperature changes for first yielding of unidirectional composites
(v,= 0.3).

AT (°C) AT (-C)
subcefl stress average mtarix stress

Bores / aluminm 241 382

SilIkon carbie / titanium 2350 4330

Results of yield surfaces for unidirectional boron / aluminum are given in Figs.
5 - 8 under zero thermal loading conditions AT =0 and thermomechanical loading

with AT -=222oC. The different figures correspond to different biaxial applied

stress states with all other components of applied stress being identically zero.

It can be readily observed that for AT = o, (Figs. 5a, 6a & 7a) the difference
between the two methods of prediction is not substantial. The shapes of the

yield surfaces are similar for all cases, however, the matrix subcell stress
method generally provides more conservative predictions. For yielding due to

axial and transverse normal stresses, (Fig. 5a) the subcell yield surface is inte-

rior to the matrix average yield surface except at the two points 0, =±Y. The
subcell yield surface for the combination of two transverse normal stresses is
entirely within the matrix average yield surface (Fig. 6a), but the two yield sur-

faces are essentially identical for the case of transverse shear ,2 and axial nor-

mal ;11 loadings. This latter result indicates that the microlevel stress states

associated with these two loadings are nearly uniform throughout the matrix. It

is noted that the "comers" in the subcell predictions are associated with yielding

of the individual subcells and are not indicative of the actual material response.

The results in this study (for AT-0) agree with those of Pindera & Aboudi

(1988).

For thermal mechanical loading (Figs. 5b, 6b, & 7b) there are substantial differ-

ences between the two predictive methods. The subcell yield surface is both
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Fig. 5. Yield suirface of a unidirectional boron /alumninumt in a, - c-3 stress space.
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AT = 0 C

Matrix Average
Matrix Subcell

023/y 1
.Y1 222' C

Fig. 7. Yield surface of a unidirectional boron / aluminum in 0 2 - 0 u stress space.

distorted and shifted by the presence of thermal stresses. In contrast, the matrix

average yield surface experiences nearly pure shifting. For the combination of

al and a3 loading (Fig. 5b) the yield urfaces translates along the -l axis. In

the case of 022 and ;-3 (Fig. 6b), the translation is along the o22 = o33 line and for
- loading (Fig. 7b) the translation is along the On axis.

The subcell yield surfaces in Figs. 5b, 6b & 7b approach the origin at one point

since the temperature change of 2220 C is close to the AT required for thermal

yielding (241C). Temperature changes greater than 241°C would not cause the

yield surface to translate beyond the origin; the initial yield surface for mechani-
cal loading loses its significance in such a case since the material has already

yielded.

Figure 8 shows a comparison of the subcell yield surfaces in the o23 - 03

stress space. This figure clearly shows a strong effect of thermal stresses on the
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AT=oc
-- AT=22'

0.33

-1. .1.0 t-*O 0. .l 3 /

Fig. 8. Yield surface of a unidirectional boron / aluminum in o - 033 stress space.

yield surface. At the elevated temperature the yield surface is distorted and

shrunk considerably. A larger AT would shrink the yield surface even farther.

The substantial differences noted in the predictions for the matrix subcell and

average matrix stress methods for the various thermomechanical cases
highlights the importance of modiing local matrix stresses. The use of average

matrix stresses in analyzing inelastic response of composites may be misleading.

Subcell yield surfaces for scs-ffi-6A -.4v are presented for AT=O and AT=i0000C in
Figs. 9, 10, &11. This temperature change is only 42% of that required for

yielding due to pure thermal loading. This is quite different from the tempera-

ture change used for the B I/A which was 92% of that required for thermal yield-

ing. Although the AT for the SCS-6I'i-6A-4V is well below that required for
yielding it nevertheless represents a large AT in terms of service environment

and is 4.5 times the AT considered for B/Al. The results in o,. - ;33 stress space
(Fig. 9) show a reduction in size of the yield surface and shift in the negative 33

direction at elevated temperature. The results in a - ,22 stress space (Fig. 10)
indicate an unusual phenomenon. The yield surface at elevated temperature :s
shifted in the negative ;- direction and also distorted such that the elevated tem-

perature yield surface is actually outside the room temperature yield surface

. .
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4.5 1. 6.36.50 33 NY

Fig. 9. Yield surface of a unidirectional scs-6'T--6A-4v in(123 ; 33 Stress SPaCe.

03 2 /

Fig. 10. Yield surface of a unidirectional scs-6'Ti-6M-4V in CF13 - 02 Stress SPaCe.
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over a range of negative o22 values. The o,, - a3 stress space results in Fig. 1 1
are very similar to those for B lAi in Fig. 6b. The elevated temperature yield sur-

face has shifted along the C-2=033 line and distorted. The results indicate that

thermal stresses have a more severe effect on the yield surface of the

scs6iTi-6A-4V than on the B/Al.

CF22/Y
AT =1000° C ]

0331y

Matnix Average-2 - Matfix Submitl

Fig. 11. Yield surface of a unidirectional SCS--6'Ti-6A1-4V in a2 - o33 stress space.

4. Conclusions

A micromechanical method that requires minimal computational effort

has been used for the prediction of initial yield surfaces of metal matrix compo-

site subjected to a variety of thermomechanical loadings. The two methods

which have been employed in the generation of yield surfaces are based on the

average stress in the matrix and subcell matrix stress.

Application of the von Mises criterion results in the prediction that some

metal matrix composites may experience yielding at zero load due to relatively

small temperature excursions during thermal processing. The temperature

change required to cause yielding is a function of the mismatch between fiber

and matrix materials, and the magnitude of matrix yield stress.

The study has shown the importance of a micromechanics analysis for the

prediction of yield surfaces in the presence of thermal-mechanical loading. It

.. . .. . ..;. ,:. 4, . .



387

has been shown that the subcell yield surface is both distorted and shifted due to

thermal stresses. In contrast, the yield surface based upon the average matrix

stresses is predicted to shift but not distort significantly due to thermal effects.

Both the shifting and the distortion must be included in problems involving ther-

mal mechanical yielding.
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Abstract
This study deals with the modelling of the inelastic thermrnomechanical behavior of Metal

Matrix Composites considered as microinhomogeneous and macrohomogeneous materials. The
theory is developed within the framework of the classical thenoelastoplasticity without damage.

At first, the local constitutive equation is recalled. Introducing stress and (or) strain concentration

tensors for mechanical and thermal fields, the behavior of the equivalent homogeneous medium

is deduced in a compact form. In order to determine these concentration tensors, both for the

reinforcements and the grains of the polycrystalline matrix, a general integral equation is propo-

sed. Some various approximation methods for solving such an equation are listed.

The self-consistent approach is developed for a granular medium in order to determine the

thermoelastic (linear) as well as the thermoelastoplastic behavior.

Results concerning monotonic loading are presented. A special attention is given to resi-

dual stresses. For complex loading pathes (biaxial loading), initial and subsequent yield surfaces

are shown.

1. Introduction

The evaluationi of the linear thermoelastic behavior of microinhomogeneous materials such

as polycrystals or composites was studied by many authors : Kr6ner (1958), Levin (1967), Hill

(1967)... In particular, Levin (1967) has shown that the overall thermal expansion coefficients of

a composite medium can be calculated from the thermoelastic-constants of the constituents and

the overall elastic moduli. The determination of the thermal stress concentration tensor is not

necessary in order to find the overall thermal behavior.

In the past, many models based on the self consistent theory of Kr6ner (1958, 1961) have

been proposed to evaluate the macroscopic behavior of heterogeneous media from the properties

4--;'..i
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of the constituents and the interactions between them: Hutchinson (1970), Walpole (1981),

Laws (1973), Dvorak (1986), Budiansky (1970), Berveiller and Zaoui (1979). More recently,

the integral equation formulation for linear properties (Dederichs and Zeller (1973), Kr6ner

(1977), Korringa (1973)) has been developed and unified variational treatment (Willis, 1977)

generate estimations of overall properties.

Such an integral formulation was extended to elastoplasticity of polycrystals (Berveiller

and Zaoui (1984), Lipinski and Berveiller (1989)). Thus, for '-near behavior and weakly inho-

mogeneous elastoplasticity, one can consider that the formal solution of such kind of problem is

known.

The question becomes different when dealing with thermoelastoplastic strongly inhoroge-

-cous materials like metal-matrix composites (M.M.C.). At first, plastic strain in the matrix is a

supplementary source of internal stress but simultaneously it can reduce internal stress (for

example thermal) by plastic accomodation. Thus, even if the local elastic and plastic behavior is

temperature independent, thermal, elastic and plastic internal stresses are strongly coupled which

leads to a complex overall behavior. The second difficulty is associated with the nonlinearity of

the plastic constitutive equation which needs an incremental formulation.

Partial solution of problems of this kind has been limited to simple microstructure and (or)

restricted loading situations : De Silva and Chadwick (1969), Dvorak and Rao (1976). The

most general development was proposed by Dvorak (1986) for fibrous composite with trans-
versely isotropic phases.

It was shown that the overall thermal stress and strain vectors can be obtained

through superposition of certain uniform field in the phases and local fields caused by uniform

stress or strain. The elastoplastic behavior of the matrix is assumed to be piecewise linear.

This paper contains four major parts. In section 2, the local constitutive equations for ther-

moelastoplastic behavior are reviewed. Perfect bounding between reinforcements and matrix and

between grains is assumed. The plasticity of the matrix is described through the glide on crystal-

lographic slip systems inside the grains of the polycrystalline matrix. This allows to take into ac-

count some crystallographic (and) or morphologic textures of the matrix due to forming proces-

ses.

By analogy with the elastic behavior of microinhomogeneous material, (KrOner (1977),

Dederichs and Zeller (1973)) the metal matrix composite is considered as a continuum medium

with microstructure. Using equilibrium and compatibility conditions, the partial differential equa-

tions of the problem are transformed into an integral equation in section 3. A modified self con-

sistent scheme, taking into account the influence of the reinforcement shape on the local fields in-

side the matrix is proposed in section 4. Applications and results are presented in the last part.
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2. Local and overall constitutive equations

The infinite microinhomogeneous medium of volume V undergoes a thermomechanical

loading defined by the state of overall stress 1, the temperature 0 and the corresponding rates

and 9.

At a point r of the medium, the total strain rate eT(r) is the sum of the elastic e(r), the plas-

tic eP(r) and the thermal io (r) parts

ET(r) = + (r)+(r) + (r) (I

For each grain of the matrix, the elastoplastic behavior is first specified when the elementary plas-

tic deformation mechanism is the crystallographic glide (plastic resolved shear strain rate -?) on

(g slip systems with ng and mg the unit slip plane and slip direction vectors, respectively. The

corresponding plastic strain rate is given by

N

-- W.-? (2)
g=1

with

Rg =(mi nf + m8f n'j) (3)

The resolved shear stress rate T9 on (g) for a given stress rate ci, with respect to the crystal lattice

is:

: = Rg ij..i (4)

If a linear strain hardening behavior is assumed (Hm = hardening matrix) so that the critical

shear stress rate on (g), ;f,,, is given by
N

YX Hgh " (5)
h=1

the following formal constitutive equation may be written

R Kg RSok (6)
g.h

where K = H-t for the active system only.

The thermoelastoplastic strain rate for a grain of the matrix is now given by

1x
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*T r ' gh h
C S 11 RKR 1 0~fij (7)

g,h

where s = c! is the crystal elastic compliance tensor (c = elastic moduli) and n are the local ther-

mal expansion coefficients. Equation (7) is only valid if the local yield conditions are fullfilled

(see Berveiller and Lipinski, 1989). A more general case of a constitutive equation including

phase transformation was given by Patoor et al. (1989).

Now (7) is written in the form

CT(r) = gijkl(r) (r)+nWr(8ij + ii

or by inversion as

a.Jr) = lijkl(r) kT(r)- m i(r) 0 (9)

For the linear thermoelastic behavior of reinforcements, the constitutive equation has the same

form as in (8) or (9) but with g = s and 1 = c.

The overall thermomechanical constitutive equation takes a form analogous to (8) or (9)

=ij Gikl ZW + N i (10)

or

ij = ijkl EkTI-M6 (1 )

with l=g
"t

mml:n

L=.G-1 (12)

M=L:N

The overall stress and strain rates i and ET may be deduced from the local ones by the usual ave-

raging operations

= If &.j(r) dV =- (r) (13)
ij Vv



393

T V e(r) dV a (r)

Vj fij (14)
V

Following Hill (1977), thermal and mechanical concentration tensors relating local and overall
fields are introduced for the local stress and strain tensors

(r )  Bijka(r) Yka + bij(r) 0 (15)

r.(r) r) F + a.(r) (16)

By (13) (14) (15) and (16), one has

B3=I , A=I , b=O , i=O (17)

where I is the fourth order unit tensor.

Now the overall thermomechanical behavior follows from (9) (16) and (13), (14), as

Ii =li(r) Akl(r) E n+ lij(r) akd(r) - mij(r) 0 (18)

The overall instantaneous moduli L and thermal stress coefficients M of (11) can be identified

comparing with (18)

Lijmn =lijkl(r) Akl,.(r)

(19)
i ir l(r) akl(r)

At a current loading state, local stress and plastic strain depending on the thermomechanical

loading path are supposed to be known. Then, the local moduli I and m can be determined from

(7) or (9) but the determination of L and M requires the knowledge of the concentration tensors A

and a. They can be calculated by the self consistent method or using some other hypothesis. Ne-
vertheless, all the models of the literature constitute an approximation of the integral equation

proposed in the next section.

I 41
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3. Integral equation formulation

We consider the inhomogeneous solid as a continuum medium with a microstructure satis-

fying

" the static equilibrium equation

&U.J~) = 0(20)

" the thermomnechanical constitutive relations (9)

&()=I1(r) -T() - m..(r)eii jkl Ck i

" the kinematic relations

C T +6. j)(21)

where u is the velocity field.

For the sake of brevity, only the displacement boundary value problem, which requires the con-

dition

u r i r ( v (22)

is considered.

Th stipo snow thecaulahtionof i.r from iT and i which allows to find A(r) and a(r). As

it ws dne b Deerics ad Zller(193) o Krner(1977) for an elastic behavior, it is conve-

nient to introduce a homogeneous fictitious medium with tangent moduli LO and MO.

Th4; spatial v'triation of 1(r) anid m(r) are now contained in S1 and 8m defined by

81 (r) I (r)-LC (23)

Sm (r) = mn (r) - N

Equations (9), (20) and (2 1) take the form

L.ki ui i- [l 1 (r)[8 ek(r) - 8mi.(r) 6]~=0 (24)
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The solution of these equations may be obtained thanks to the Green tensor G' of the homoge-

neous fictitious medium through the integral equation

r) e,,(') -Smk~r')0 W(25)

with

rlIr-r') = .(G.kji. + d~.)(26)

Here 1%, instead of 1, indicates a derivation with respect to r'.

For a medium composed of grains inside the matrix and reinforcements, the first approximation

of (25) may be obtained assuming ant uniform thermoelastoplastic behavior within each consti-

tuent, In consequence, the strain rate J is als assumed to be uniform at the grain or reinforce -

ment level.

The deviation parns of the instantaneous moduli ana thermal coefficients are now

61 (r)= Al' H4 (r') (27)

N

sm (r') =I~ Am~ HN (r) (28)
N

where

N 0 0if r'tVN (29)H (r)= t I fT r= VN

and VN is the volume of constituent with the label N.

Similarly, by denoting the average value of the strain rate over a constituent N as

EN=±f (rdV (30)
VN v

the strain rate field can be expressed in the form

*T E N (r) (31)
N
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so that the quantity 81 (r') T(r) -8 (r') 0 is simply equal to

[81 (r') F r(r') - 8m (r) 0] = E [AIN EN - AmN 01 HN(r) (32)
N

Substituting eq. (32) in the integral equation (25), one finds after taking the mean value on both

side

*N *T '1.JM. *M M A£.=E 7u. ~t e Am 16(33)
ij ij + ijkl klmn mn kI (

M

with. F.a (r - r') dV dV' (34)
w it kl V N r j, (r( 4

For ellipsolfdal inclusions, and when M = N, the tensor TM M is linked to the Eshelby's tensor SM

by the expression
SSM o94

mn = TijkI Llmn

For M * N, the tensor TM N describes the interactions between two inclusions M and N. This ten-

sor was introduced by Berveiller and al. (1987) where a method of calculation of TM N in the case

of a pair of ellipsoidal inclusions embedded within an anisotropic matrix is also given.

Equation (33) contains directly the Eshelby's equivalence between inelastic strain (Am 6) and an

inhomogeneous mechanical strain (81 T) which is the basis of the Levin approach. The relation

between thermal and mechanical concentrations tensors are contained in (33).

For example, for a single inclusion, equation (33) gives

* = NE + T" (Al' E - AmN 0) (36)

The mechanical strain tensor AN is given by

A N = (I _- TXN AIN) 1l (37)

and th.; thermal strain tensor aN follows from (36) and (37)
N AN)- IN-i Nra

a = (I - A I A m (38)

This formulae is analogous to the equation proposed recently by Benveniste and Dvorak (1990)

by a more complex treatment
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For a real composite, the central problem is to solve the integral equation (25) in order to obtain,

the concentration tensors A and a. Due to the strong inhomogeneous behavior of the MMCs and

their particular two phase microstructure, a general acceptable approach is difficult to obtain.

In the next section, we propose a two stage self consistent approach which allows to take into

account the special mechanical coupling between reinforcements and grains.

Another possibility lies in a multisite self consistent approach proposed in the case of elasticity by

Fassi-Fehri and al. (1989) but this modelling is not investigated in this work.

4. A two stages self consistent approximation

The summation over all the N constituents which appears in the integral equation (33)

makes difficult the determination of the concentration tensors. On the other hand, the total mi-

crostructure is unknown in general. These complex questions justifie the introduction of raison-

nable approximations. The self consistent approach is well known in elasticity or plasticity of

weakly inhomogeneous materials.

This approach has to be modified in the case of MMC for which a two stage localisation is neces-

sary ;r )rder to take into account the granular structure of the matrix and the presence of reinfor

cement.

In view of the above relation between thermal and mechanical concentration tensors, we restrict

ourselve to the discussion for the case where 0 = 0.

In this case, we have to find two types of localisation tensors: one AgM for a grain g of the ma -

trix and one Al for the Ph reinforcement.

A direct one site self consistent scheme would give from (33):

La- ET +gM

eff oleff (39)

I=ET+ T' Al' i' (40)
eff

where

ism is the strain rate in the gd' grain of the matrix
$

TgMEf is defined by the integral (34) and calculated for a spherical inclusion located inside
the infinite homogeneous medium with LO Leff ot the elastoplastic tangent moduli

AIgM (AIgM -iM - Ltff)

I. :-.

I :,.
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Here, we have supposed that the real shape of the grain of the matrix is spherical. It is clear from

(39) that such a direct localisation for the grains of the matrix dont take into account the long

range stress field in the neighbourhood of the reinforcement.

Instead of doing directly (39) and (40) it seems to be better and more precise to relate the strain

rate of a grain gM of the matrix to the mean strain rate CM of the matrix by the relation

igm *M .fgM gm -gM= + M E (41)

where now

TMSM is calculated from (34) for a spherical grain located inside the matrix with LM for

elasto plastic tangent moduli.

A] gM = IgM - LM (42)M

From the average theorem

feI + (-f) M E (43)

and the localisation equation (40), the relation between iM and ET is now:

IM =- f (I -T ff AIlcff)"I iT (4

( -f)

From (41) and (44), one obtains the localisation tensor for a grain in the MMC

(I - T! IMffT (45)

The so introduced localisation tensor is very different from those obtained directly from (39)

which has the form

~s ( 1.~Ma ) ~ (46)

It is now possible to come back to a classical one site self consistent scheme in which we

are looking for an equivalent ellipsoidal inclusion with unknown virtual shape "e" in order to ob-
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tain the equivalence between (45) and (46).

We can write
e -1 S "1 (I - f (I - T1ef Altef)'l

(I.T jgA j) = (I 'M AI ,M)  I-f (7
m I - f(47)

C

from which the tensor Teft can be calculated.

It is now easy to evaluate the effect of the long range stress field of the reinforcement on the

mechanical localisation of the grains of the matrix.

For usual MMC, 'he heterogeneity of the matrix is small compared with those between matrix

and reinforcement
gM gMAIgM << Aieff

NI elf

Neglecting the granular heterogeneity of the matrix (AlSMM - 0) and supposing that the tensors

Teff Al are small in comparison with the unit tensor, a first order approximation of (47) gives

fANI M  I-f(I+ T Al'f)

1+ ef Al -f (48)

or

e M lef~kl _ f~efAl'ef
(1-f) fAl =fT l (49)

This expression shows a strong influence of the shape of the reinforcement on the equivalent

inclusion for the grains of the matrix.

Introducing more simplifications, we assume that the Leff can be approximated by the Voigt's

hypothesis: Le-f - f 11 + (1 - f) 1
m .

Equation (49) is now reduced to

Tam - (50)
eff eff

This equation shows that the best choice for the equivalent inclusions describing the grains

of the matrix is to assume that their shape are those of the reinforcements.

This model has been developed and some results are presented in the following section. These

results confirm clearly the above conclusions.

" ' ,2
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5. Applications and results

The simulated MMC corresponds globaly to an AI-SiC composite. The material properties

arc summarized in Table II. Both phases are supposed to have an isotropic thermoelastic beha-

vior.

The first application concerns the elasto plastic properties of the composite with the spherical

reinforcement (a = b =c) and for several volume fractions (f = 0, 0.1, 0.2) loaded in tension at

constant temperature. The evolution of the initial yield point and the hardening modulus is depic-

ted in Fig. (1) as a function of volume fraction.

The next figure (Fig. 2) shows, for the same composite (a = b c = 1, f = 0.1) the effect of the

plastic offset on the shape of the initial yield surface in the E, - "2 subspace. In this case, the

isotropic response is observed as expected. For the elongated and parallel reinforcements one can

expect a highly anisotropic behavior. Fig. 3 shows the initial yield surfaces for a composite with

ellipsofdal reinforcements (a = b = 1, c = 7, f= 0.1).

For purely mechanical loadings, it was verified that the shape of the equivalent grain of the ma-

trix has a rather negligible influence on the overall behavior (fig. 4) for a tensile test.

On the other hand, during a thermomechanical loading the effect of the shape of the equivalent

inclusion is much more important. The next figure (Fig. 5) presents the 33-component of the

deviatoric part of the thermal stress concentration tensor b'33 for any grain of the matrix as a

function of the aspect ratio c/a' of the matrix grains (b 33 = b33 - 1/3 bk)

These results have been obtained for ellipsoidal reinforcements (c/a = c/b = 7) oriented in 3 direc-

tion and for three volume fractions (f = 0.1, 0.2, 0.3).

The rapid evolution of b33 from low values corresponding to spherical matrix inclusions toward

some asymptotical values for c/a' = c/a can be observed.

The anisotropy of the thermomechanical behavior of the composite is visible for spherical grains

of the matrix (c'/a' = 1) but this anisotropy has a smaller effect than the mechanical coupling

between elongated reinforcements and matrix.

This phenomenon is also observed during a mechanical loading on the composite with prelimi-

narily introduced thermal stresses.

Figures 6a, 6b and 6c present tensile and compression curves at two temperatures for three as -

pect ratios of the equivalent matrix grains. The influence of thermal stresses is very small when

dealing with spherical grains and becomes more and more pronounced if the aspect ratios of

grains tend to those of the reinforcements.
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Reinforcements Matrix Unit

Elasticity A 27 559 2 692 daN/mm 2

v 0.27 0.3

Thermal
expansion 4.10 -6 21.10 -6 K

°

coefficient

Plasticity slip systems - 12 x (111 )<1 1 >

critical * - 14 daN/mm 2
shear stress

hardening H 1" P/M daN/mm 2
matrix H 2 7AxH 1

Microstructure Volumic f 0f
fraction

shape and ellipsomal real shape : spherical
orientation a, b, c effective Inclusion : ellipsodal

a', b, c'

The last figure (Fig. 7) has been obtained for a non proportional thermnomechanical loading path.

The composite has been first loaded in compression under the yield point and then its tempera-

ture has been increased. The thermaly induced plastic strain depends also strongly on the aspect

ratio of the matrix'grains.

6. Discussion and conclusions

A general thermomechanical integral equation relating the local strain rate to the overall

loading parameters has been proposed. This equation contains directly the relations between the
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thermal and mechanical strain concentration tensors.
All previous models can be deduced from this equation. In the case of one site self consistent ap-

proximation of the above integral equation for MMC materials, the attention must be focused on

the mechanical coupling between the grains of the matrix and the effective medium.

By introducing a fictitious shape of the matrix grains, a new two stage self consistent approach

has been developed.

Some applications concerning AI-SiC composites has been presented and the mentionned me-

chanical coupling effect was demonstrated.

10"E [xlO2MPa] f=0.2

f=O.l

6 " f =0.

4

82 3456

P

E [ ]

Fig. 1: Uniaxial tensile curves for several volume fraction of spherical reinforcements (a =

b - c).

mm4 m
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rPlastic Strain Offset

N5%

-ie -0 -4- 2 8 1b 12

Fig. 2:Initial yield surfaces for different offset of plaotic strain. MMC with spherical reinforce -
ments and 10% volume fraction.

8 , xe a

41

-4. Plastic Strain Offset

N 5 %

233 N1l0 rPa I

Fig. 3: Initial yield surfaces for elongated reinforcements (10a l~b c) and 10% volume frac-

tion.
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1 2

Fig. 4: Effect of the equivalent grain shape on the tensile curve. MMC with 10% fibers and

aspect ratio a = b = c/7.

-50 -
b [X1i' rPa K]

F=.

Fig. 5 - Evolution of the grain deviatoric stress concentration component b'33 as a function of the
shape of equivalent grains. MMC with 10%, 20%, 30% volume fraction of parallel rein -

forcernents whose aspect ratio is c/a =c/b =7.
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Traction tAe=30& Traction 'Ae=O'

Fig. 6: Tensile and compression cuvswt w emeaueice es=0 anCA

10 2

E 2

(a ) equivalent grains are elphpsocal ( ca' cb' = c')
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12 2 ON Traction Ae=300& C

~ [x1t1Pa]Traction Ae=0' C

Compression Ae=300' C

(c) equivalent grains are ellipsoidal (c/a' = c/b' = 7).

Roo-Ae [C]

c'a' '~ c'/a' =4 c/a' 2

E100,0 7

Fig. 7: Thermal induced plastic strain at constant compression Stress (1;3 =-365 MPa) MMC
with 10% volume fraction of ellipsoidal (c/a = 7) reinforcements and different shape for
the equivalent inclusion descibing the gain of the matrix.
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Residual Stresses in Fibrous Metal Matrix
Composites: A Thermoviscoplastic Analysis

Erhard Krempl and Nan-Ming Yeh

Mechanics of Materials Laboratory

Rensselaer Polytechnic Institute

Troy, N. Y. 12180-3590

ABSTRACT

The vanishing fiber diameter model together with the thermo-

viscoplasticity theory based on overstress are used to analyze

the thermomechanical rate (time)-dependent behavior of

unidirectional fibrous metal-matrix composites. For the

present analysis the fibers are assumed to be transversely

isotropic thermoelastic and the matrix constitutive equation is

isotropic thermoviscoplastic. All material functions and

constants can depend on current temperature. Yield surfaces

and loading/unloading conditions are not used in the theory in

which the inelastic strain rate is solely a function of the

overstress, the difference between stress and the equilibrium

stress, a state variable of the theory. Assumed but realistic

material elastic and viscoplastic properties as a function of

temperature which are close to Gr/Al and B/Al composites

permit the computation of residual stresses arising during cool

down from the fabrication. These residual ,iesscs influence

the subsequent mechanical behavior in fiber and transverse

directions. Due to the viscoplasticity of the matrix

time-dependent effects such as creep and change of residual

stresses with time are depicted. For Gr/Al residual stresses
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are affecting the free thermal expansion behavior of the

composite under temperature cycling. The computational

results agree qualitatively with scarce experimental results.

INTRODUCTION

Metal matrix composites consist of a ductile, usually low

strength matrix reinforced with elastic, brittle and strong

fibers. Ideally, the strength of the fiber and the ductility of the
matrix combine to provide a new material with superior

properties. Selecting the best combinati-'ns of fiber and matrix

materials is a difficult task which involves conflicting demands

and many compromises. To prevent self stresses from

developing during cool down from the manufacturing

temperature it is desirable to have the same coefficient of

thermal expansion for fiber and matrix. This ideal, however, is

seldom achieved as other considerations but the coefficient of

thermal expansion have priority in selecting the constituent

materials.

It is known that the residual stresses have an influence on the

mechanical behavior, Cheskis and Heckel (1970], Dvorak and

Rao [19761, Min and Crossman [19821. Moreover, the thermal

expansion behavior of metal matrix composites is shown to be

influenced by the residual stresses, Garmong (1973], Kural and

Min [1984] and Tompkins and Dries [1988]. In precision

applications the exact thermal expansion behavior is of great

interest as it influences the performance.

It is the purpose of this paper to provide a comparatively

simple and approximate means of calculating the residual
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stresses in a unidirectional metal matrix composite during cool

down from the manufacturing temperature and to assess their
influence on subsequent mechanical behavior as well as on the

thermal expansion of the composite under uniform temperature

changes. To accomplish this task the vanishing fiber diameter

model of Dvorak and Bahei-El-Din [1982] is combined with

the thermoviscoplasticity theory based on overstress (TVBO)

of Lee and Krempl [1990]. TVBO is a "unified" theory which

does not separately postulate constitutive laws for creep and
plasticity but models all inelastic deformation as rate

dependent. Experiments with modern servocontrolled testing

machines have shown rate dependence even at room

temperature for engineering alloys, e.g stainless steels, Krempl

[1979], 6061-T6 Al alloy, Krempl and Lu [1983], and Titanium

alloys, Kujawski and Kiempl [1981]. The transition from low

to high homologous temperature behavior is usually

characterized by a decrease in strength and an increase in rate

dependence with an increase in temperature. This behavior

can be modeled easily by TVBO by making certain constants

depend on temperature. It is not necessary to postulate

different laws in different temperature regimes.

First the governing equations are stated. They are represented

by a system of first order, nonlinear, coupled differential

equations which must be solved for a given boundary condition

and loading/temperature history. Base data for 6061-T6 Al
alloy for which viscoplastic material properties were

determined by Yao and Krempl [1985]. Plausible changes of

these properties with temperature were postulated and the

system of differential equations was integrated to depict the
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properties of the model. Of special interest is the Influence of

the residual stresses set up during cooling from the

manufacturing temperature of 660 °C. Owing to the

viscoplastic nature of the matrix constitutive model the

residual stresses redistribute while the composite is at ambient

temperature. For the material properties chosen in the

numerical experiment this redistribution slows down rapidly

with time at ambient temperature and after 30 days a nearly

constant residual stress state is reached. Since the subsequent

response of the composite is affected by the residual stresses an

influence of time spent at room temperature on the subsequent

behavior is predicted by this analysis. The influence of

residual stresses on the subsequent isothermal mechanical

behavior and on the thermal expansion behavior of a composite

subjected to thermal cycling is investigated by numerical

experiments. The computations agree qualitatively with scarce

experimental results reported by others.

THE COMPOSITE MODEL. THERMOVISCOPLASTICITY

THEORY BASED ON OVERSTRESS (TVBO)

AND THE VANISHING FIBER DIAMETER MODEL (VFD)

For the representation of the equations, the usual vector

notation for the stress tensor components or and the small

strain tensor components e are used. Boldface capital letters

denote 6x6 matrices.

Stresses and strains without a superscript designate quantities

imposed on the composite as a whole. Superscripts f and I

denote fiber and matrix, respectively. The fiber volume
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fraction is cf and cm denotes the matrix volume fraction with cf

+ Cm =.

A unidirectional fibrous composite element is assumed where

the fiber is transversely isotropic thermoelastic, the matrix is
isotropic and thermoviscoplastic and represented by TVBO.
Fiber orientation in the 3--direction is postulated.

For the VFD model, Dvorak and Bahei-EI-Din [1982], the
following constraint equations hold

ij = = el for i#3

&3 CfA+ ca d

ii =c f if+cmi ju for i#3

3 = 4 =

When they are combined with the TVBO equations by Lee and

Krempl (1990] the composite is characterized by the following
set of equations: (details can be found in Yeh and Krempl

[1990])

-= UI& + (Km)-lXm + () 1 '+ (Am)'on + *
(1)

together with a separate growth law for the al component of

the matrix

2 .,-$
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'bl = - - --L( 7i + CU2) - CfES3Bm
Y33 1933 33

I Km "' Xj - 0.5( X'm + Xi)]}

cfEj 31Em 2 [4..PIESS - L 3

1OE - 43~) (C1 + Em) -1
(]Em)2f tp -] 0 02 (E13)2  (EM) 2

CfES3EEMdf - aj)t. (2)

In addition growth laws for the two state variables of TVIBO,

the matrix equilibrium stressegDand the inematic stress fm,

are given as

9m qm p & + .i rm4lom + {qmlrml -m [nqm~rml

UT~J~ I'[i]

.yv(3
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with

() = (xm)tH(xm)

(OMY) = I(Zm)tH(Zm)
(AM) 2'

XM = am -g

Zm =ge-f, (5)

In the above C-1 is the symmetric overall compliance matrix
whose components are functions of the elastic properties of
fiber and matrix. The viscosity matrix (Km)-I is not symmetric
and its components together with those of -1 are listed in

Appendix I. The matrices (Af)-1 and (lm)- contain time

derivatives of the elastic constants of the fiber and the matrix,
respectively. Both matrices are not symmetric. Their
components are listed in Appendix I. These matrices represent
the "additional" terms which can play a significant role in
modeling thermomechanical behavior, see [Lee and Krempl
1990a]. The viscosity function km[ m] and the dimensionless
shape function qm[r m] are decreasing (qm[O] < 1 is required) and

control the rate dependence and the shape of the stress-strain
diagram, respectively. (Square brackets following a symbol
denote "function of".) The quantity pm represents the ratio of
the tangent modulus ET at the maximum inelastic strain of
interest to the viscosity factor Km. It sets the slope of
stress-inelastic strain diagram at the maximum strain of
interest. Y33, L, h together with the components of the
dimensionless matrix H and other material properties are

'.7 1 m,- •hmmi II l i
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defined in Appendix I. An explanation of TVBO is given by
Lee and Krempl [1990] and the derivation of the above

equations can be found in Yeh and Krempl [1990].

Eq. (1) shows that the overall strain rate is the sum of the

overall elastic strain rate, the inelastic strain rate of the matrix

and the overall thermal strain rate in the case of constant

elastic properties. If temperature dependent elastic properties

are assumed then two additional terms contribute to the

overall strain -ate. They insure that the elastic behavior is
path independent, see Lee and Krempl [1990, 1990a].

Eq. (2) is used to calculate the instantaneous axial matrix

stress which can not be obtained from the overall boundary

conditions directly. o' is affected by mechanical and thermal

loadings and their loading paths. For instance for the

isothermal case when t = 0, matrix stresses in the fiber

direction (al, gi, fl) can evolve in unidirectional transverse
loading, or may evolve in unidirectional shear loading provided

the initial value of Xj is nonzero. For pure thermal loading

(overall stresses are zero), a-l together with gi, fj will develop

due to the difference in the coefficients of thermal expansion of

fiber and matrix; these matrix stresses in the fiber direction

cause coupling between the mechanical and thermal loading in

the inelastic range.

NUMERICAL SIMULATION

Eqs. (1) - (5) constitute the model which must now be
applied. The boundary conditions must be specified in

I, .,m an nn anu llllnn mnnnmm• n lnmm ~ l~n nnn
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addition to the uniform temperature history. Also material
properties must be known as a function of temperature. For

the purposes of this paper two metal matrix systems, Gr/Al
and B/Al are simulated. The matrix viscoplastic properties for

6061-T6 Al alloy are known at room temperature from
experiments reported by Yao and Krempl [1985]. Since no
experiments were available at other temperatures a plausible

temperature dependence was postulated. The elastic properties
and the coefficient of thermal expansion for the Gr and B
fibers are listed in Table 1. They are assumed to be
independent of temperature for simplicity. The matrix
properties which are close to 6061-T6 Al alloy are listed in

Table 2. They yield the matrix stress-strain diagrams at a
strain rate of 10-4 s" depicted in Fig. 1. A decrease in

modulus, flow stress and the asymptotic tangent modulus with
increasing temperature is modeled.

120 . . . .

............................ .................. ..................................

. . . . . . .. . . ... .. . . . ... . . . - -. . . .

s8o

40Al I2*

0.0 0.5 1.0 1.5 2.0

Strain , (%)
Fig. 1. Stress-strain diagrams of matrix material at

various temperatures.
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Table 1.

Elastic Properties for Boron and Graphite Fibers

Properties B Gr (**

E13 (MPa) 413400 ()689650
0.21 ()0.41

G14 (MPa) 170830 (*)15517
~a (m/m/0 C) 6.3E-6 -1.62E-6
E 1 (MPa) 413400 ()6069

GJ6 (MPa) 170830 (*)2069

a f (m/m/ 0 C) 6.3E-6 1.08E--5

*Kreider and Prewo 11974]
**Estimate

STairlin [1985]

SWu, et al [1989]
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Table 2.

Thermoelastic and Thermoviscoplastic Properties

of the Matrix

E' 74657[l - T 3) (MPa)()

zA' = 0.33 (**)
G= 28066[1 -(3)](MPa)()

a= 2.35E-5 + 2.476E-8(T - 273) (m/m/0 C) (*

mr, = F,,[rm]/Em, p m = /K

Viscosity function km P"I = k1(i+ rm-k

ki= 314200 (s), k2 = 71.38 (MPa)(*)

k3 = 53 - 0.05(T-273)(*)*)

Viscosity Factor Km = E

ET = 619[1 - (gj-3)3] (MPa) (*

Am = 72.24[l (D?.3)3 (MPa) (*

Shape function 'I"'[L'7 = c, + (c2-Cl)eXP(-C 3P")

C= 16511[l - (9~3.)3] (MPa) (*

C2 = 73910[l - (g.j3.)3] (MPa) (*

C= 8.43E-2 + 1.06E-4(T-273) + 1.914E--6(T-273) 2

+5.304E-9(T-273) 3 (MPa-') (
Inelastic Poisson's Ratio: 0.5
T= OK, 1530 K <T< 9330K

()Estimate. Temperature dependence due to Hillig [1985]

(*)Estimate

(*)Yao and Krempl [1985]
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For the integration of the coupled set of differential equations

the IMSL routine DGEAR is used.

Residual Stresses upon Cool-Down from Manufacturing

Temperature

Overall stresses are assumed to be zero and the temperature is

decreased at a constant rate of 0.033 °C/s. It is assumed that

the composite is stress free at 660 OC and that perfect bonding

starts at that temperature. Since the coefficient of thermal

expansion is larger for the matrix than for the fibers tensile

matrix stresses develop as shown in Fig. 2a for B/Al and in

Fig. 2b for Gr/Al. Owing to the assumed fiber volume fraction

150

B/Al
C'= 0.1

100 I 1" = 0.033°C/s
12-1 .... ,,

50 4

" I~~~~~~~~~~~~ T im e (D ays)  
m.......... . .." ,. ]

. .

1 3

0-300 -200 -100 0 100 200 300 400 500 600 700

Temperature (0C)

Fig. 2a. Development of matrix stress ol, matrix equi-

librium gf and kinematic stress fj during cool down

from manufacturing temperature. The inset shows

the decrease of the overstress during the room

temperature hold I - 2. Boron/Aluminum.

• " : 7 . A
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150

Gr/AI
1= 0.5

32- 1 a T =0.033°C/s

1 ................ ................ -) 222
s) o 34L)93

Time (Days) - --50 f-"

-100 -

-150 1 ....I . . . .I . . . .I . . . .I . . . .I . .
-300 -200 -100 0 100 200 300 400 500 600 700

Temperature (0C)

Fig. 2b. Same as Fig. 2a except that material is Graphite/

Aluminum. The fiber stress aj is also shown.

of 0.5 the fiber stresses are equal and opposite in Fig. 2b. They

are not shown in Fig. 2a where the fiber volume fraction is

0.1. The VFD assumption listed previously yields aj = -9al.
At point 1 room temperature is reached. Due to the

viscoplastic nature of the matrix the stresses relax to point 2

with time. The inset shows the overstress o - g, which
"drives" the inelastic deformation, rapidly decreasing with

time. All residual stresses enter as initial conditions for

simulations of subsequent tests. They can affect the modeled
behavior and therefore time appears to influence it. After 30
days the residual stress state is nearly constant. Then the
model predicts that the subsequent response becomes

independent of the rest time at room temperature. On the

scale of this graph the kinematic variable fj does not appear to
change with time. However, the digital output confirms the
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slight increase predicted by Eq (4).

Influence of Residual Stresses on Room Temperature

Mechanical Behavior

In this case a B/Al composite with cf = 0.1 is considered and

uniaxial tensile tests in the fiber and the transverse directions

are performed at a strain rate of 10 4 s . When a strain of

0.5% is reached the overall stress is kept constant to allow

creep deformation to evolve during a short period of 300 s.

Fig. 3 shows the mechanical behavior for tests in the fiber (3) -

direction. The overall stress, the matrix stress and equilibrium

stress are plotted vs. overall strain for 3 cases. Fig. 3a shows

the behavior without residual stresses, Fig. 3b has the residual

stress state at point 1 in Fig. 2 as initial conditions. This is

called Case 1 and simulates a tensile test performed

immediately after the composite reached room temperature.

The relaxed residual state of stress 1tprebented by point 2 in

Fig. 2 forms the set of initial condition for Case 2. The

mechanical behavior with this set of initial conditions is given

in Fig. 3c.

By comparing the figures the significant influence of residual

stresses on the overall stress-strain diagram can be clearly

ascertained. It can be seen that the initial slope, the stress

level at which the transition to another slope takes place and

the overall appearance of the composite stress-strain diagram

are significantly affected by the residual stresses. Owing to a

nearly zero overstress in Case 2 the initial slope seems to be

p . , ,. .
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300

No R.S.j
B/AlG

C=0. 1
200 C= 10' 1/S

Creep
W 300s

1l00

000 0.1 0.2 0.3 0.4 0.5 0.6

I Overall StrainFe3 M%

Fig. 3a. Stresses vs strain in fiber direction at roomn
temperature uhith a 300 s creep period at the
maximum stress.

300 ..

Case I
B/Al

200 IW 1/SCep

( 3

0.0 010.20 3 0.C05 .Overal Strai 300(%
Fig.3b.Sameas ig. a fr Cae 31

~'03.
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300 ...

Case 2B/AI
~C' -- 0.1

200 - = 1W l /s  
0

/ Creepm 300s

~100
g3

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Overall Strain 3 (%)

Fig. 3c. Same as Fig. Ya for Case 2.

identical to the stress-strain diagram with no residual stresses.
The level of the overall stress is considerably lower for Case 2

than for the case without residual stresses. Since it is unlikely

that a tensile test wil be performed right after reaching room

temperature and since the overstress decreases rapidly with

time, see inset in Fig.2, an experiment would yield the results
of Case 2. The residual stress state has an influence on the
relation between the strain in the fiber direction and the

transverse strain as shown in Fig. 4. From these curves the

actual Poisson's ratio based on total strain could be calculated.

The simulation of a tensile test in the transverse direction is

shown in Fig. 5a and the relation between the transverse strain

el and the two perpendicular strains (2 and f3 are shown in
Fig. 5b and Fig. 5c, respectively. A significant influence of the

residual stress state is evident, especially in Figs. 5a and 5b.

.I=== .. n n =.=.. .. . =,n-.a u u
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W -0.0

7N R.S.' B/AlCree

-0.2 NoRS /l300s
q)Cl . 15

0.
000.1 0.2 0.3 0.4 0.5 0.6

Overall Strain 63, (%)

Fig. 4. The development of the transverse strain during the
tests shown in Fig. 3.

150 I

B/Al

C=0.1
91 l0f l/s

- t100ooRS

~50

Cae0

0.0 0.4 0.8 1.2

Overall Strain E, (%)
Fig. 5a. Simulation of a transverse tensile test at room

temperature as a function of the residual stresses;
transverse stress-strain diagram.
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Fig. 5b. The development of the transverse strain in the

3--direction.

-0.0
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-1.2 . *

0.0 0.4 0.8 1.2
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Fig. 5c. The development of the transverse strain in the

2-direction.
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In Figs. 3 through 5 the behavior during the 300 s creep period
is specially marked. As expected the total creep strain

accumulated is very significant in the matrix dominated

transverse mode, see Fig. 5a. It is small for the fiber direction

as shown in Figs. 3. In each case primary creep is modeled
with a rapidly decreasing rate. This is shown in Fig. 5d for the

transverse case. This corresponds to the so-called "cold creep"

phenomenon found at room temperature for ductile engineering

alloys. For the strain vs. strain curves , Figs. 4, 5b and 5c, the

creep periods do not differ significantly from the periods under
increasing stress. Only a slight break in slope is noticeable at

the outset of the creep period.

1.0. .

-/ B/Al

0.50

0.0

0 100 200 300

Time (s)

Fig. 5d. Transverse creep strain during the 300s creep

period.

[4
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The Influence of Residual Stresses on the Thermal Cycling
Behavior of Gr/A Composite.

The thermal cycling behavior of Gr/Al is of special interest

due to the negative axial CTE of Graphite, see Table 1. It

gives rise to some unusual expansion behavior, see Wu et al

[1989] and Tompkins and Dries [1988]. In this paper we
simulate that the composite is free to expand (overall stresses

are zero) and is subjected to a temperature cycle starting from

room temperature to * 120 OC at a rate of 0.033 0C/s.

The resulting strain in the fiber direction - temperature

hysteresis loop is depicted in Fig. 6a. It is seen that the

composite expands on the segment 0-1 but then contracts with

increasing temperature, segment 1-2. Upon decrease of

temperature from 1200C the composite shrinks as expected but

0.03 ' I ' ' I

No R.S.
Gr/AI

•0.02
C. 0.5
t .033 'Cls

0.01

S0.00

-0.013

.0.02 1, - [

-150 -100 .50 0 50 100 150

Temperature (°C)
Fig. 6a. Temperature-strain in the fiber direction loop

during temperature cycling of Gr/Al composite.
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expands at point 3 although the temperature continues to
decrease. This pattern continues in the subsequent reversals.

At point 4 a 600 s temperature hold is introduced and the

strain decreases by a small amount, the composite "creeps"

under zero external load and the creep curve is shown in Fig.

6b. To demonstrate that the temperature rate has an influence

the calculation was repeated with a rate of 0.1 °C/s. There is

very little influence on the temperature/strain curve, but creep

during the temperature hold period is accelerated as shown in

Fig. 6b.

x10-30.0 , . [ . . . . I . . . . I . .

CA) Ui'=.033C/sI

U
C=0.5

0 100 200 300 400 500 600

Time (s)

Fig. 6b. Creep curves during temperature hold at 120 C,

see points 4, 5 in Fig. 6a.

The explanation of this unusual behavior can be found in the

development of the fiber and matrix stresses during cycling as

shown in Fig. 6c. It is seen that a temperature-stress

hysteresis loop develops and that the matrix starts yielding at

,,!t
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150
No R.S. c'= 0.5

100 Gr/AI T =0.033oC/s
150 - 0- 2;m

03

4

" 50 -
3M' /  ",'" ./ 4'

00
-1 0- ........ ....... 5

-150 -100 -50 0 50 100 150
Temperature (C)

Fig. 6c. "Internal stresses" which develop during tempera-

ture cycling shown in Fig. 6a.

points 1 and 3 where the breaks in Fig. 6a occur. The unusual
behavior is due to the matrix yielding. In the inelastic range

the stiffness of the matrix is low and the overall behavior is
dominated by the fiber which has a negative axial CTE.

To show the influence of residual stresses Cases 1 and 2 are

simulated in Fig. 7a. and Fig. 7b, respectively. Cooling down

takes place on 0-1. While the composite rests free of overall
stresses at room temperature, see Fig. 2b, the overall strain
increases on path 1-2, see Fig. 7b (this portion is absent in
Fig. 7a which depicts Case 1). At 2 temperature cycling

begins, the composite expands first, 2-3, but starts to shrink,

3-4 and then the pattern of Fig. 6a continues. However, this
time the first part of the first cycle 2-5 is not inside the

IA
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c'C=0.5
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Fig. 7a. Temperature-strain graph during cool down from

660* C and subsequent cyjcling as in Fig. 6a. Case
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Case 2
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subsequent loop as it was the case for Fig. 6a, see segment 0-3.
Rather the first segment is shifted and the shift depends cn t"ie

case considered. The residual matrix and fiber stresses have
altered the cycle pattern. Their development during cycling

(the cool-down portion 0-2 is omitted ) is depicted in Fig. 7c
for Case 2. For the identification the same numbering scheme

has been used as in Fig. 7a and in Fig. 7b. It can again be

ascertained that the "breaks" in the expansion behavior are

coinciding with the onset of inelastic deformation of the

matrix.

150
Case 2 c'= 0.5
Gr/AI 1" = 0.0330C/s

..-. . . . -. . - . . 56

-100-

-150 . ..
-5 -100 -5 0 50 100 150

Temperature (°C)

Fig. 7c. The "internal stresses" developed during

temperature cycling for Case 2. Curves start at

room temperature, point 2 in Fig. 7b.
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DISCUSSION

A "unified" viscoplastic constitutive model for composite

analysis, the thermoviscoplasticity theory based on overstress,

was used in conjunction with the vanishing fiber diameter

model in a simple analysis of the influence of fiber/matrix
residual stresses on the mechanical and thermal cycling

behavior. Realistic but assumed material properties permitted

the execution of numerical experiments. The stress-strain

diagrams reported in Figs. 3a-3c correspond qualitatively with

those reported by Cheskis and Heckel [1970]. In both cases a

break in the slope of the overall stress-strain diagram is

observed when the matrix starts to deform inelastically in an

appreciable manner. The presence of residual stresses shift the

location of this break point, see Figs. 3a-3b.

Another feature exhibited by the present theory is the

manifestation of the influence of rate dependence on the

behavior. The first example was the redistribution of the

residual stresses while the composite element was sitting stress

free at room temperature after cool-down from manufacturing
temperature. The theory predicts that this redistribution will

nearly come to an end after some time which depends on

material constants, especially the viscosity function used. In

the present application the redistribution is almost finished

after 30 days. While the stresses redistribute the time at room

temperature appears to have an influence on the subsequent

behavior.
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For Gr/Al the residual stresses were shown to affect the free

thermal expansion of the composite. The results of Figs. 7a

and 7b suggest that residual stresses are responsible for the

special shape of the first part of the first cycle of Figs. 6 and 7

of Tompkins and Dries [1988]. In comparing their figures with

Figs. 7a and 7b it has to be kept in mind that the presently

used theory models only cyclic neutral behavior whereas real

matrix alloys may exhibit cyclic hardening or softening. These

aspects could be added to the present theory in a refined

approach.

The present paper intends to show the capabilities in principle.

For the exact modeling of a metal matrix composite various

refinements are possible. Included are the determination of

matrix and fiber properties as a function of temperature and

the use of other micromechanical models.
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APPENDIX I
For the transversely isotropic (fiber) and the isotropic (matrix)

elastic properties the usual designations are employed. For

convenience the following quantities are defined and used

Y33 = cfEJ3 + cmEM

L = v4E m - LAE 3

V31- cfi" + cmlip.

The components of the overall elastic compliance matrix U-1

are
(T-1)11 - C cm  cfcL 2  1)22

Ell E' E13EmE 33

14 MY" cfcmL 2

U - {c 2 = -(C + c -
Ell EM  EhEmEss

(U-)13= -V3__ (U-l) 2 3  (g')31 = ("-')32
1933

(C-1)33 =

133

()C-)44 cf + C

G14  Gm

T-96 c + c"
Gh6  Gm

with all other (U'1)ij = 0.

The viscosity matrix (Ki)- is given by the components (the

argument of the viscosity function km is omitted)
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(K9j = + 0.5-1) =(K)

Kk' E 33  2

(K±') ~ =(Rm)2

2~Kmkm Y

(Km)ii = f

2Y3 3 Kk

=K~j = m )~

All other (Km)J -- .
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The components of the "extra terms" (RW)- and (R 1 are

(ftf)j - ~__ f ML AE3 - i4 )

( 1)2 ( (ES3)2 Z3s

= P,1 -(4f)]=)Of~i

(Af A~ C i34iE 3] - (fIT3)j =E 3 WM~3

EiX33\ z4F~ 3  -(tf~

(ft')31 = C f I 14 3 - PL1 3) = (fMj

with~~~ all othr fty1O. (G 4
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(Am)j -- mk + ( f Cm mmmm = (Am~) j

(Em) 2  (EE) 133

(Am) =cM ~ - 'E)( - 2f.~

(AtM) j = ~-~~-k 3 m - 9E3 3) =(AtM) i
EME33f

(Am3j cmEm

=-EmE 33

(Am) 6j = _mG=(MA (M5
(ftm(G = ()2-

All other (Im 4 =0.

The overall coefficient of thermal expansion vector -a is

represented by

1933k

(a= (C-fc44E3 +Cc mE')/s 33

Finally

1 --0.5-0.50 00"
1 -0.5000

H 1 000
sym 300

30
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Elasto-Plastic Analysis for Cracked Fibrous
Composites under Axial and Thermal Loads

K.P. Herrmann and Y.Q. Wang

Paderborn University, Laboratorium fOr Technische Mechanik

D-4790 Paderborn, Federal Republic of Germany

ABSTRACT

This investigation is concentrated on the analysis of existing matrix
cracks in a brittle fiber-ductile matrix composite unit cell under tensile
and/or cooling loads. An analytical formula for predicting the microstresses
of a unit cell is presented. Longitudinal radial cracks and penny-shaped
cracks as well located orthogonal to the fiber direction are studied.

1 INTRODUCTION

Metal matrix composites represent a very important class of fibrous

composites and they are at present widely used in modern engineering

structures. Thereby a successful application of these composites depends on

a sound understanding of the fiber-matrix interactions as well as on the

inherent defect structure, particularly cracks, produced by the fabri-ation

process and/or the loading conditions. It has been found that the damage

growth in composite materials is usually caused by the growth of existing

microcracks(Sendeckyj et al, 1978; Nuismer et al, 1982), and the growth of

these microcracks depends significantly on the mirrostresses of the compo-

site elements. Hashin and Rosen(1964) firstly introduced the corresponding

cylindrical composite unit cell in order to study the macromechanical

properties of composites. Ebert et al(1968) studied the stress-strain

response of a composite cylinder under axial loading. Dvorak et al(1976)

developed an elasto-plastic solution concerning the microstresses of a unit

cell under thermal load. Furthermore, from the standpoint of fracture

mechanics, Herrmann et al(1978,1986,1988) studied the small initial cracks

in composite microcomponents with elastic or elasto-plastic matrices sub-

jected to well-defined macroscopic thermal stress fields and also interface

cracks in more complicated material models. Taya and Chou(1982) calcu-

lated the energy release rates of various penny-shaped cracks in order to

predict the non-linear region of the stress-strain curve. Dvorak and Bahei-

..... ,;4 l'ilf : : , f "Ae
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Crack- 2

Fi ber rcp
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-, Ptsi area
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Ia lb

Fig.l A unit cell of a fibrous composite with two different crack types

El-Din(1989) studied the fracture properties Gf metal matrix composites and

Law and Dvorak(1987) found a loss of stiffness due to penny-shaped cracks

associated with fiber breaks. Nuismer and Tan(1982) studied the role of

matrix cracking and the resulting stiffness loss.

This paper concentrates on the analysis of existing matrix cracks in a

brittle fiber-ductile matrix composite microcomponent under tensile and/or

cooling loads. For most metal matrix composites, the inequality a f< ,nm

is valid for the coefficients of the linear thermal expansion of the fiber

and the matrix, respectively. Shrinkage occurs over the fiber-matrix

interface which results in compressive radial stresses over the material

interface and tensile circumferential stresses and axial stresses within the

matrix. Therefore, the radial lr-ingitudinal cracks and the penny-shaped

cracks orthogonal to the axi. lirection(cf.Fig.l) are especially important

for the cohesive strength of a fibrous composite. In the present study, the

stress distribution characters in the matrix plastification process are

analyzed by means of numerical and analytical methods, respectively, in

representative elements of different brittle fiber-ductile matrix

composites(material combinations: Glass/Al, Si/Steel, Boron/Al). Cracks

located far-away from a fiber as well as near to a fiber are studied.

2 STRESS DISTRIBUTION OF THE UNCRACKED UNIT CELL

2.1 Basic Formulations and Assumptions

The model of a composite unit cell without any crack can be des-

cribed by an axial symmetrical boundary-value problem. There often exists

-.;J5 -

: . . . ... - , , .i~ iM...E.
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1 Matrix L

-x tax
Fiber

Fig.2 FEM model

a plastic zone around a fiber(cf.Fig.lb) because of the stress concentration

in the vicinity of the fiber-matrix interface. Therefore, the unit cell is

divided into three parts: fiber, plastic zone around the fiber, and elastic

area of the matrix, respectively. The boundary and transition conditions

are

o-r (rm) = 0 (la)

T r (rep) Iplastic zone = Or (rep) I elastic zone ( b)

Ur (rep) plastic zone = Ur (rep) lelastic zone (Ic)

OFr (rf) Ifiber = O-r (rf) Imatrix (ld)

ur (rf) Ifiber = ur (rf) Imatrix (le)

Because the unit cell is very long in comparison with the dimensions

of its cross section, the research is based on a generalized plane strain

assumption, that means E z keeps constant through the cross section.

Further, the von Mises yield condition together with the associated flow

rule and the Prandtl-Reuss theory are applied for the plastic analysis.

2.2 The Finite Element Analysis

Fig.2 shows the considered model which is composed of a fiber and

the surrounding matrix. The incremental method is used in the finite

element calculation. For the sake of convenience of the analysis the axial

strain e z is regarded as a nodal displacement. Then, there are three nodal

displacements for every element: ui,u i+l,. Because Ez keeps constant

through the cross section of the composite microcomponent, Ezi-values of

all elements are the same. Therefore, they can be regarded as one degree

of freedom and put at the same position in the global displacement

matrix.
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Twelve models have been considered. The geometrical parameters and

material properties of them are shown in Table 1, where the subscripts f

and m mean the fiber and the matrix, respectively, v is Poisson's ratio, E

is Young's modulus and O" is the yield stress of the matrix.
y

Fig.3 shows the numerical results of model I under thermal and axial

loads as well obtained by means of the FEM program. The thermal load is

AT = -300°K and the axial tensile load is P = 30000 N. The first
z

element yields for AT = -92.84°K and Pz = 9284 N. In every loading step

the temperature increment is AiT = -10.36 0 K and the axial load increment

is AlP z = 1036 N, respectively. The calculation was finished after 21
loading steps. The numerical results show that if the fiber volume fraction

is relatively small, then

a) The local deviatoric stresses,i.e.,the stress differences(-e-Or,Or-4Oz),

keep basically constant and the hydrostatic stresses only increase with

increasing load after yielding (see Table 2).

b) The existence of a small plastic zone surrounding the fiber has

little influence on the stress distribution In the elastic zone. It can be

seen from Fig.5 that graphs from an elastic analysis and an elasto-plastic

i~
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Table I Material properties

Model rf/rd af 1K-11 um IX-11 EfN/mm
2
j EmIN/mm2) Oy [NImm

2 ] 
If V ,

1 0.1 6.'75:10
-
6 2.39.10

-5  
8.40.104 7.20.104 120. 0.21 0.34

2 0.2 6.7510-6 2.39-10-5 8.40:104 7.20104 120. 0.21 0.34
3 0.3 G.7510

-
6 2.3910

-5 
8.4010

4  
7.20-104 120. 0.21 0.34

4 0.4 6.75.10-6 2.3910
- 5  

8.40-104 7.20104 120. 0.21 0.34
Glass/Al

5 0.1 .0'10-6 1.11"10-
5  

1.13"105 2.10:105 520. 0.3 0.3
6 0.2 7.0-10-6 1.11 0

-
5 1.l3"105 2.10"05 520. 0.3 0.3

7 0.3 7.0.10-6 .1'10
-  

1.13.105 2.105105 20. 0.3 0.3
8 0.4 7.010- 1.1110

- 5 
1:13"105 2.10"105 520. 0.3 0.3

.3i/Steel

9 0.1 4.5:10-6 2.39.10
-5  

3.85-105 7.20"104 120. 0.13 0.34
10 0.2 4.510

-
6 2.39.10

-
5 3.85"105 7.20.104 120. 0.13 0.34

11 0.3 4.5 10
-
b 2.39.10

- 5  
3:85"105 7.20"104 120. 0.13 0.34

12 0.4 4.5.10-6 2.39.10-
5  

3.85"105 7.20'104 120. 0.13 0.34
0 IoIAl

Table 2 Stress differences in the matrix [N/mm 2 1
0'r - O-o

r3 /rf Stepl Step3 Step5 Step7 Step9 Stepll Stepl3 Step15 Stepl7 Stepl9 Step2l

1.051-134.0 -133.2 ,r-132-2 -132. -12 -133.2 1-133jA -1-3.7 -133.9 -141 -3.
1.15 -111.6 -131.4 -130.8 -130.5 -10. -130.7 -130.8 -11. -114 -316 -3 .1 3 - 1 -107 -7 31 7 12. 5 .2 -128.3 -128.3 -128.6 -128.8 2 -129.3

1.5 -65.8 -80.5 -95.3 -109.9 2.7 -121. -121.6 -121.8 -122.1 -122.4 -122.7
1.7 -51.1 -62.5 -73.9 -85.3 -96.6 -107.7 -113.7 -114.0 -114.3 -11.6 -115.0
1.9 40.8 -49.9 -59.1 -68.1 -77.1 -86.1 -94.9 -103.7 -104.3 -104.8 -105.3
2.15 -32.0 -39.1 -46.3 -53.4 -63.5 -67.5 -74.4 -81.3 -87.9 -91.7 -92.4
2.45 -24.5 -30.0 -35.5 -41.0 -46.4 -51.8 -57.1 -62.4 -67.5 -72.5 .8
2.80 -18.8 -23.0 -27.2 -31.4 -35.6 -39.7 -43.8 -47.8 -51.8 -55.6 -59.2
3.25 -14.0 -17.1 -20.2 -23.3 -26.4 -29.5 -32.5 -35.5 -38.4 -41.3 -44.0
3.75 -10.4 -12.8 -15.1 -17.4 -19.7 -22.0 -24.3 -26.5 -28.7 -30.9 -32.9
4.25 -8.1 -9.9 -11.7 -13.5 -15.3 -J7.1 -18.9 -20.6 -22.3 -23.9 -25.5
4.75 -6.4 -7.9 -9.3 -10.8 -12.2 -13.6 -15.1 -16.4 -17.8 -19.1 -20.4
5.25 -5.3 -6.4 -7.6 -8.8 -10.0 -11.1 -12.3 -13.4 -14.5 -15.6 -16.6
5.75 -4.4 -5.4 -6.3 -7.3 -8.3 -9.3 -10.2 -11.2 -12.1 -13.0 -13.8
6.25 -3.7 -4.5 -5.4 -6.2 -7.0 -7.8 -8.6 -9.4 -10.2 -11.0 -11.7
6.75 -3.2 -3.9 -4.6 -5.3 -6.0 -6.7 -7.4 -8.1 -8.7 -9.4 -10.0
7.50 -2.6 -3.1 -3.7 -4.3 -4.9 -5.5 -6.0 -6.6 -7.1 -7.6 -8.2
8.50 -2.0 -2.4 -2.9 -3.3 -3.8 -4.2 -4.7 -5.1 -5.5 -5.9 -6.3
9.50 -1.6 -1.9 -2.3 -2.7 -3.0 -3.4 -3.7 -4.1 -4.4 -4.7 -5.0

o-z - o-r

r./rf Step1 Step3 Step5 Step7 Step9 Steplil Step13 SteplS Stepl
7 

Step19 Step2l

1.05 ,A 29.a I00.3 100.4 1 0 9..2 21a 91a 97.6 2 96
11 06.2 10.4 ., 02 10.4., 10 . 10 . i2.a io . lo1.7 i01.2 io0.6

1.30 74.3 90.9 107.6 109.0 10..5 1094 109.3 10,0 10L, 1QLZ 107,6
1.50 63.3 77.4 91.6 105.8 1.3 117.3 117.3 117.1 116.8 116.5 11.1
1.70 55.9 68.4 81.0 93.5 106.0 118.6 L.A 125.2 124.9 124.7 124.4
1.90 50.8 62.1 73.6 85.0 96.3 107.8 119.2 130.6 131.1 130.9 130.6
2.15 46.4 56.7 67.2 77.6 88.0 98.4 108.9 119.3 129.7 135.8 135.6
2.45 42.6 52.2 61.8 71.4 81.0 90.6 100.2 109.9 119.5 129.1 137.9
2.80 39.8 48.7 57.6 66.6 75.5 84.6 93.6 102.6 111.6 120.6 129.6
3.25 37.3 45.7 54.1 62.5 71.0 79.4 87.9 96.4 104.9 113.4 121.9
3.75 35.6 43.6 51.6 59.6 67.6 75.7 83.8 92.0 100.1 108.2 116.4
4.25 34.4 42.1 49.9 57.6 65.4 73.3 81.1 89.0 96.9 104.8 112.7
4.75 33.6 41.1 48.7 56.3 63.9 71.6 79.2 86.9 94.7 102.4 110.2
5.25 33.0 40.4 47.8 55.3 62.8 70.3 77.8 85.4 93.0 100.6 108.3
5.75 32.6 39.9 47.2 54.6 61.9 69.4 76.8 84.3 91.8 99.3 106.9
6.25 32.2 39.5 46.7 54.0 61.3 68.7 76.0 83.4 90.9 98.3 105.8
6.75 32.0 39.1 46.3 53.6 60.8 68.1 75.4 82.8 90.1 97.5 105.0
7.50 31.7 38.8 45.9 53.0 60.2 67.5 74.7 82.0 89.3 96.7 104.0
6.50 31.4 38.4 45.5 52.6 59.7 66.8 74.0 81.3 88.5 95.8 103.1
9.50 31.2 36.2 45.2 52.2 59.3 66.4 73.5 80.7 88.0 95.2 102.5

Note: Underline _ means that the point has been yielded
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_ -: ':":. , . - ::v.. -
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analysis, respectively, are very close in the elastic zone but separate in

the interface between the plastic and the elastic zone.

The results from the other models show similar attributes. Therefore,

in the following an analytical approach is presented based on those

essential features of this elasto-plastic boundary value problem.

2.3 The Analytical Approach

2.3.1 Basic Assumptions

An approximate analytical solution is presented here based on the

following assumptions:

a) The local principal stress differences keep constant after yielding.

b) The existence of a plastic zone surrounding the fiber has no

influence on the stress distribution in the elastic zone.

2.3.2 The Stresses in the Elastic Zone

Therefore, according to assumption 2.3.1.b), the stresses in the elastic

zone can be estimated by an elastic analysis without consideration of any

plastic area as the following:

0-r =(aAT + a 2 Pz) rf 2 (I (2)

r 2rf 2  r2

r 2  r 2
(T9 =(a ! AT + a2 P r ( + ,(3)

2vrf2 (alT+a2 z

tT E (a 3 AT + a P -O ATE 4 (4)
In f

By using the definition

a = ( i = 1,2,3,4 ) (5)
b

it follows

a1 ' = [Em(rm 2 - rf 2 )(l+vf) + Efrf2(l+vm]( n-O ) (6a)

a2' = (vf-Vm)/r (6b)

a '  2 [( +vf) -(l +vm)o m ](vm-vf)rf 2- r-mEm(rm2 -r f 2 )+afEfrf 2 ]

3 fE (m rf2 )  m f(1VM 2 vm )rf +(lvm-2)rM 2  2

E (r -2 _- f2f2) f-V -2v f )/E f (6c )

a' 1v-2 I 22)/E/ IV (1-V v 2 )r(2+0+V M )r M (6d)
4f V Em (rm2 _ rf2 )

m7 f
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Fig.4 The size of the plastic zones under different loading

b =[4v f V -2+vm) +f + In (I-V f-2v1) f (lm)]r f 2  (

- [I+Vm+(-Vf2vf2 m In rm2 ~ mm rfI (e
f f)E f In E (rIn2rf2

2.3.3 The Plastic Radius

If Lhe load is iarge enough there will be a plastic zone near to the

fiber on the side of the matrix(Fig.lb). The yielding area can be estimated

by using the von Mises yield condition:

[2+_)2(r-2 (O,_)2] > 2 0-y2  (7)

where 0- is the equivalent yield stress of the matrix. By substituting the

equations (2)-(4) into the inequality (7), the plastic zone size can be

obtained as.

rf r <re (8)

with

rep

IF 2 2( AT)
2

y f 2

and with the definitions

- 2 2(0
(r In rf)

p'
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(2v -lr 2(+82/AT
f2 E(a 3 a 4 Pz/ AT) - %rEm+ - (rm 2Irf a~ 2 P T

Further, eq.(9) can be rewritten as

y rep2

AT =-(12)

-If 2
2rep 4 + fl 2 rf 4

In the following negative temperature increments only have been

considered. Fig.4 gives the comparison between the results obtained by

eq.(9) and the FEM program, respectively.

2.3.4 Stresses in the Plastic Zone

According to assumption 2.3.1l.a), the local stress differences keep

constant after yielding. Therefore, the stress differences of a point in the
plastic zone can be estimated by those stress differences by which the

point starts yielding. From eq.(12) the yielding temperature load at this

moment can be calculated, Then, by substituting the result into eqs.(2)-(4),

Step
2

l

o 'Stepi Sei

Stepl

Z 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 7

RADIUS fnm
t  

RADIUS I-)1

Notes:

*-Data obtained from an elasto-
plastic analysis by the aid of

Step~
t a FEM program

StOpS1
. Data obtained from an elastic

ZStepI analysis by the aid of a FEM
: __________ program

*-Data obtained from an elasto-
12234 5667 8 a 1 plastc analysis by the aid of

fRADIUS ("It an analytical appiouich

Fig.5 Comparison between results obtained
by FEM and by an analytical approach

5M'.4
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the stress differences in the plastic zone can be obtained as

20f rf2

0- = (13)
3(f2 2 r4  f f12 r f 4

Oy (;3 f2 r 2 
+ firf2 )

or - o z = (14)3(f r f r

Moreover, from the (!quilibrium condition follows

dar Cr - - -2TyfIrf2

(15)
dr r r43(f2 2r4, f+2rf4

2 1f

Then, the solution of the differential equation (15) reads

22  4 , f22r4
f- In + c (16)

I3f2I r2

where c is a constant which can be obtained from the following boundary

condition:
2 2

r f (I r m
U-r = (aIAT + a2 Pz (1 - ) for r = rep (17)

rm2rfr
2  

Further, the other two stress components can be obtained from the

eqs.(13)-(14). Thus, the stress distribution in the plastic zone reads

Iflrf2 +k f 2 rf 4 +f2
2 r4  rep 2

r f(r 2 -r 2)

r rep 2rm2)
+ (a I AT + a2P) rep2(rm2_rf 2) (18)

- r 2-19)

3(f 2
2 r4 

+ fl rf)

fI
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Oy (8 f2 r2 f frf 2)

Uz OF r (20)

z r 3(f2r4 + fl2rf4 1

where r can be obtained from eq.(9). Fig.5 shows the comparison of theep

results obtained by the FEM program and by the eqs.(18)-(20), respectively.

3 DUGDALE CRACK ANALYSIS FOR A

CRACK TIP FAR-AWAY FROM A FIBER

It is clear that if a crack tip is situated far-away from a fiber and

if its size is small in comparison to the size of the matrix, the effect of

the fiber-matrix interface on the crack can be neglected. Then, the stress

field without the crack delivers the boundary conditions for the calculation

of the crack tip stresses from a corresponding crack boundary value

problem. It is also clear from the stress distribution characters that the

dangerous crack types concerning the strength of a fibrous composite are

linear cracks in the radial direction of a composite microcomponent and

the plane cracks orthogonal to the axial direction of the unit cell(cf.Fig. la

and Fig.lb). In this section, the Dugdale model for these two kinds of

cracks are considered.

3.1 Dugdale Model for a Radial Longitudinal Crack

Because the stress distribution in the elastic zone of the matrix is

not remarkably influenced by a small plastic zone around a single fiber,

the Dugdale crack model presented by Herrmann(1978) can be used alko

for the situation that a thin plastic zone exists.
Modifying Herrmann's solution, the lengths 'i=l,r) of the plastic

zones at the two crack tips are the roots of the following equation where

the plus and minus signs correspond to the left and right crack tip,

a rm 2[r0 _ (a/2+s)]

2 [r0
2 

- (a/2+s)
2 ] 3 / 2

2 (r m2 - rf 2 ) -y a/2
arc cos ( ) (21)

(a I AT + a2 Pz) rf2  a/2+s

and the crack opening displacement reads
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Fig.6 Virtual concentrated ring load Fig.7 Crack opening displacement

m a/2

5c s+ r o 4( - ) (22)
E a/2+s

m

where r0 is the coordinate of the position of the crack center and a is

the crack length.

3.2 Dugdale Model for a Penny-Shaped Crack

3.2.1 Basic problem

Similarly to the Dugdale crack model for a linear crack it is

assumed that the plastic zone at the crack border consists of a thin

annular region. Then an appropriate Dugdale model for a penny-shaped

crack is obtained by consideration of the following equivalent elastic crack

boundary value problem(cf.Fig.lb and Fig.6):

-" for r < r

C z c- co (23)
- az + LTy for rco< rc < rcp

where rco is the radius of the circular crack and rco < rc < rcp repre-

sents the plastic zone at the crack border(cf. Fig.lb). Further, the stress

0'z is given by eq.(4). According to the theory of the Dugdale crack model
the size of the plastic zone can be determined by use of the following

condition at the fictitious crack border

K1  = 0 (24)

where KI is the stress Intensity factor.

According to Kassir and Sih(1975) the K -value for a penny-shaped

crack under normal load reads
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r
2 cp r -cf z

K - dr

cp 0 rcp c

2 [O-zrcp -oy rcp -rco2
0- r (25)

By substituting eq.(25) into eq.(24), the size of the plastic area at the

crack border can be calculated as follows

ay r co

rcp = (26)
cp -T- 2 _ G-z2

3.2.2 The crack tip opening displacement

According to Fig.6 virtual concentrated ring loads F in r = r are

introduced in order to get the crack tip opening displacement.

By applying Castigliano's theorem the displacement of the ring should

be equal to the partial derivative of the strain energy with respect to F.

If F approaches zero, the displacement of the ring will be the crack tip

opening displacement. It reads

aE
= lr (27)

Irc=rco F-*-O a F

where E is the strain energy. The energy release rate GI for a mode I-

crack in an elastic region is defined as

aE
G I A (28)

where A is the area of the crack. Obviously, E depends on a-c, F, and
z

A. Therefore
rfcp

E (0-c, F, A) = E (acz c, 0) f GI dA  (29)
0

It is easy to prove that the relationship between GI and K in the

present problem is the same as that for a plane strain problem. Therefore,

eq.(29) can be rewritten as

AA
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c ~ I-Vm 2 fo c p  Uz c F2

E =E ( -rC,F,0 )+ (KI  + KIF2 dA (30)

m 0

By introducing eq.(30) into eq.(27) one obtains

2(1Vm2) a K1F
S li r KI dA (31)

F-'0 Em 0 aF

According to Kassir and Sih(1975) it valids

0 for rc < rco
= (32)

I for r. > r

3/2 22T1 32 rclrc2-rco 2 )
C C

rC
and K1 z can be obtained from eq.(25). Then it follows

4cp (0 - 2 r 2)(m 2  {Ozr c - y rc  -co

k = i 2E f zc dA

c ( c 2o
m

By introducing eq.(26) into eq.(33) the crack-tip opening displacement can

be expressed as:

8 (I-Vm 2)rcoCO = o y- y ~- 2 ) (34)

m

A numerical evaluation of this equation is given in Fig.7.

4 ANALYSIS FOR A CRACK TIP NEAR TO A FIBER

If the crack tip is near to a fiber the effect of the fiber-matrix

interface on the crack has to be considered. Especially, if the crack tip

contacts the plastic zone around the fiber the above mentioned Dugdale

model can not be applied in order to estimate the fracture resistance of

a composite microcomponent. Thereby, many investigations have pointed out
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that the interface properties are very important for a determination of

the fracture behaviour of a fibrous composite.

It can be seen from Fig.3 that the circumferential and the axial

stresses, respectively, will decrease rapidly in the vicinity of the material

interface if there is a plastic zone around the fiber. Therefore, associated

with the plastic energy dissipation at the crack tip the existence of the

* plastic zone will improve the fracture resistance of fibrous composites. It

is possible to sustain a stable crack growth or arrest a crack in the

plastic zone. Further, the stable crack growth is described here by means

of the energy release rate. A special finite element program was

developed for the numerial calculation of the energy release rate. Based

on these analyses the effects of plastic zones around fibers on the

fracture resistance of fibrous composites are discussed.

4.1 Energy Release Rate

If a crack extends by a small amount A ia, the stress O-y along the

new extended crack surface will be released and there will be an opening

displacement v. For simplicity this process can be regarded as a

continuous process as shown in Fig.8. The crack tip opens when the stress

ory along A ia is gradually released. Obviously, the released energy is the

volume covered by the 0l -stress surface and the energy release rate can
y

be expressed as

A.a v(O,x)
2 1G = A j dx foy(x,v) dv (35)

ia 0 0

The process can be modeled by the FEM-model shown in Fig.9. The

nodal forces at the nodes I and 2 are released in steps and the energy

Y

X
aya

S..S

Fig.8 Energy release

v
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SII 
P -0

1 2 3 P 2

Fig.9 FE-model for an energy releasing process

release rate G can be obtained by means of the following integral

2 vIv2
G fPI dvl + P2 dv 2 ) (36)

0 0

4.2 Numerical Calculation

Fig.10 shows a finite element model for the numerical analysis of a

cracked composite unit cell. Because of the symmetry of the cell only one

half of the unit cell was considered. For the sake of convenience of data

preparation this unit cell was divided into several substructures. The thick

lines in Fig.10 represent the boundaries of the substructures. The crack

length is a and the crack propagates towards the fiber. The largest crack

propagation length is A a = 1/3 a. The stable crack growth for model 3

in Table I with four different positions of the crack tip under at least

four different thermal loads ( AT = -100°K, -200 0 K, -300°K, -4000 K) and

tensile loads, respectively, was calculated. The positions of the crack tip

near to a fiber(cf.Fig.10) are given by ra = 3.3, 4.3, 4.7, and 5.1mm,

respectively. The crack length a (cf.Fig.10) is 1.5mm.

Fig.1i shows the energy release rate for ra = 4.7mm and ra= 3.3mm,

respectively. It can be seen from Fig.lla that the energy release rate

increases firstly with increasing thermal load until AT = -2000K and

decreases gradually for higher thermal load. This phenomenon can be

[-
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Fig.1O FE-model of a cracked composite microcomponent
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Fig. I I Energy release rate G under different thermal loads
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explained by the wake of the plastic zone at the crack tip shown in

Fig.12 which gives the plastic area in region A (see Fig.10). For

AT = -100°K both plastic zones around the fiber and around the crack

tip are small and they don't contact each other. The circumferential

stresses near to the crack tip will increase with increasing thermal load

and then the energy release rate will increase too. But for AT = -2000K

both plastic zones start to contact and get together gradually. Because the

circumferential stresses decrease rapidly in the plastic zone around the

fiber (cf.Fig.3), the stresses near to the crack tip are improved and the

energy release rate will not increase for the higher load. This can also be

seen clearly from Fig.13 in which the dotted lines represent that thermal

load at which the two plastic zones contact. Fig.lib shows energy release

rates for a crack tip very near to a fiber where both plastic zones join

when the thermal load is rather small. This picture shows the situation

when the crack penetrates into the fiber from the matrix side and the

energy release rate will decrease very quickly after this penetration.

Fig.14 gives the profiles of a stable crack extension. The crack

becomes much sharper after the onset of growth than it was in the initial

state. Therefore, the energy release rates are always much smaller at the

initial crack growth than those for further stable crack growth.

In,ha( state Initial state

After extenson of the crack After exte-so of the crack

AT -1oo'K AT T-OK

Plastic zone

Fig.12 The wakes of the plastic zones for stable crack growth

Ie
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ra= 5.1 mm

ra=4 3 mm AT= -200*K

-o.

r a 4 7 m m

2 raa3m mm

* e o ,

-100- -200 -300 -400 .0 .1 2 .3 4 .5
AT [K) - Aa [mm]

Fig. 13 Energy release rate G Fig.15 Energy release rate for an
in dependence on temperature initial crack tip at r = 4.7mm anda

P z/AT = -100 N/ 0 K

Ater crack etension

Initial crack length
0,2m

Fig.14 The profiles of a stable crack extension

Fig.I5 shows the energy release rate at a crack tip under combined

thermal and tensile load. It can be seen that the fracture resistance is

improved in comparison with Fi, .lla because of an acting tensile load

which makes the plastic zone around the fiber of a thermally loaded unit

cell iarger(cf.Fig.5).

Similar to the distribution of the circumferential stresses the axial

stresses decrease rapidly in the plastic zones around fibers. Therefore, the

existence of a plastic zone may also improve the fracture resistance to

penny-shaped cracks located in unit cells which are submitted to tensile

loads. Because the plastic zones around fibers are mainly caused by
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thermal loads, it means that the fracture resistance to penny-shaped

cracks of a unit cell under both tensile and thermal loads may be better

than that of a cell under tensile load only. A detailed investigation is

presently on the way.
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Abstract

The applicability of averaging schemes, with emphasis on the Mori-Tanaka method,

for the prediction of the response of binary composites in the plastic range is

discussed. The applied loading is subdivided into small increments and the Eshelby

solution for the inhomogeneity problem is used in conjunction with an averaging

scheme to obtain the load increments in the various phases. Since the Eshelby

solution depends on the instantaneous matrix material properties and these are

updated at the end of each load increment, using the backward difference scheme,

an iterative procedure is necessary for the calculation of the correct load increments

in the phases (concentration factors). The performance of Mori-Tanaka and

self-consistent schemes is compared with results obtained using the modified

periodic hexagonal array (PHA) finite element model for a SiCw-At particulate

composite.

ti
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Introduction

Averaging methods based on the Eshelby solution of the ellipsoidal
inhomogeneity (Eshelby (1957)) have been used extensively for the evaluation of the
effective elastic properties of fibrous or particulate composites. The most prominent
ones are the self-consistent method and recently the Mori-Tanaka method, both
summarized in the review paper by Dvorak (1990). An attempt to extend the

self-consistent method to composites undergoing elastoplastic deformations has
been made by Hutchinson (1970) (following Hill's (1965a) formulation) for
polycrystals and by Dvorak and Bahei-El-Din (1979) for fibrous composites under
axisymmetric mechanical loading and uniform thermal loading, among others. The

extension of the Mori-Tanaka method to deformation plasticity has been attempted
by Tandon and Weng (1988) for particulate composites.

In this work, averaging schemes are formulated for binary composites with an
elastic phase dispersed in an elastoplastic matrix modeled by a time independent
incremental plasticity constitutive law. In the first section, the average elastic

stress and strain concentration factors are obtained for binary composites, starting
with the equivalence principle of Eshelby and following the Mori-Tanaka (1973)
assumption of an average stress in the matrix. An extension to include elastoplastic
matrix behavior is then attempted and history dependent concentration factors are
defined. In the second section, a numerical scheme is described for the integration

of the combined system of matrix plasticity equations together with the incremental
equations that define the concentration factors. Explicit evaluations are given for a

Mises yield criterion and kinematic hardening according to Phillips hardening rule.
The third section contains comparisons of the predictions of Mori-Tanaka and
self-consistent methods with numerical simulations using a periodic hexagonal array

model (PEA) (Dvorak and Teply (1985)) for a SiCw-Al composite.

1. Concentration Factors

1.1 Elastic Concentration Factors by the Mori-Tanaka Method

Let a composite material consist of two elastic phases and be loaded by a

macroscopically uniform stress, , or strain, -. The uniform applied fields are

assumed to extend over a representative volume V. The representative volume
forms a characteristic sample of the microstructure and consists of a sufficiently
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large number of inclusions of each phase, yet its size is small compared to the
macroscopic length scale (Hill (1963)). To explicitly evaluate the phase average

stress and strain concentration factors for a binary composite we assume that the
stress and strain fields in the dispersed phase can be represented by a single

inhomogeneity embedded in an infinite medium. According to the self-consistent
method (Budiansky (1965), Hill (1965b)), the interactions among the
inhomogeneities for finite volume fractions are approximately taken into account by
embedding the inhomogeneity in a medium with the effective elastic properties.
The above methodology was initially developed to model the average constitutive

behavior of polycrystals but was later applied to composites. The basic difference

between composites and polycrystals is the existence of a distinct matrix phase in
composites which supports the various dispersions. This realization established a
new trend in evaluating effective properties for composites. The ellipsoidal

inhomogeneity representing the dispersed phase is embedded in an infinite matrix
material instead of an effective medium and the interactions are taken into account
by appropriately modifying the average stress (strain) field in the matrix from the

applied one. The idea of modifying the stress field in the matrix instead of altering
its material properties was originally proposed by Mori and Tanaka (1973) for the

transformation problem and subsequently modified for the inhomogeneity problem
by Taya and Mura (1981), Weng (1984) and recently reconsidered by Benveniste
(1987). Following the above principle we will briefly go through a derivation of

stress and strain concentration factors.

Assume first that a macroscopically uniform strain C is applied to the
representative volume V. Due to the interactions of the inclusions, the average

strain in the matrix is perturbed by an amount 7, while the strain in the
inhomogeneity has an additional perturbation cPt (Weng (1984)). Based on

Eshelby's (1957) equivalence principle, the stress field in the inhomogeneity can be

made equal to the stress field of an equivalent inclusion that has the matrix
material properties and undergoes a transformation strain et , thus compensating for

the change in the material properties. The equivalence principle has the explicit
form

Lt(i+ +ept)=Lm( +N+eptet), (1)

where the subscript f refers to the inhomogeneity and the subscript m to the matrix

material. We also follow Hill's notation in representing by bold face capital letters

fourth order tensors and by bold face lower-case letters second order tensors. In the

*. mmmm A m mmd••m
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above, and also in the sequel, L denotes the stiffness tensor, while M denotes the
compliance tensor, with appropriate subscripts to indicate the phases. The relation
between the perturbation strain ep t and the transformation strain et is given by
Eshelby's solution through the S tensor, namely ept - Set. The strain 7 can be
expressed in terms of the transformation strain by using the requirement that the
volume average strain, <e>, must be equal to the macroscopically applied strain,
that is

<e> = cfC + C + ept) + cm-C + C) -= e ,(2)

from which we deduce that I = --c pt = --Cfset. This result allows us to write the

average strain in the inhomogeneity ef in terms of the applied and the

transformation strains by the formula

ef C +C+ep C+mSet . (3)

To be able to evaluate the strain concentration factor for the inhomogeneity

(ef = Afi), we should eliminate the transformation strain t. Writing the

equivalence principle (1) in the form Lfef = Lmef - LmCt we easily obtain

Ct = Mm (Lm-Lf) ef , (4)

and, substituting the above result back into equation (3), we finally have the strain
concentration factor for the inhomogeneity given by

Af = [I+cmS Mm(Lf-Lm)]- 1 = [I+cmMm(I-T)(Lf--Lm)] - 1  (5)

In a similar way the inhomogeneity stress concentration factors defined by
af = BfZ are obtained, with the result being

Bf = [I+cmLm(I-S)(Mr-Mm)] - 1 = [I+cmT Lm(Mf-Mm)] - 1 . (6)

We stress that S denotes the Eshelby tensor for an ellipsoidal inclusion with the
shape of the inhomogeneity and the matrix material properties. The computation of
the Eshelby tensor for a general anisotropic material has been carried out

z- F;



469

numerically (see Appendix), while analytical expressions can be found in Mura
(1987) for various special cases of geometry and inclusion shapes. We also report
the dual formulae of the concentration factors in equations (5) and (6) using the T
tensor (T, defined by oPt=Tat, is the dual to S). These alternative expressions are
obtained using Hill's (1965b) formulae which connect the S and T tensors, namely S
Mm = Mm(I-T) and T Lm = Lm(I-S) . Similar expressions to the ones given in

equations (5) and (6) for the concentration factors have been derived by Weng
(1984) and Benveniste (1987). Since they are all based on Eshelby's equivalence
principle, they are all equivalent.

The average concentration factors for the matrix are found by using the well
known relations

cfAf + cmAm = I , cfBf + crBm = , (7)

while the overall effective properties are evaluated from (Hill (1965b))

L = cjLfAf + cmLmAm , M = cfMfBf + cmMmBm (8)

1.2 Concentration Factors in Composites with Elastoplastic Phases

Assume that one or both of the phases behave elastoplastically. The local fields
in the phases are not only non-uniform due to the complicated geometry but they
are also functionals of the prescribed loading history, that is,

jx,t) = jrfx;r(t)] and £r(Xit) = ertx;3(t)l , (9)

where the brackets denote general functionals of the loading history ( (t) is replaced
by i(t) for strain history). The subscript r indicates the phases, which for the
purposes of this work will be limited to two, namely r=f, denoting the
inhomogeneity phase with the convex geometry (ellipsoidal shape), and r=m,
denoting its complementary shape which is occupied by the matrix material. If we
increment the loading parameter by an infinitesimal amount, dt, inducing an
infinitesimal load increment, d -o(t)/8l dt, the increments in the local stress
and strain fields are given by

i minn nSnmunmmi i a i i Hm
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dir(Xt) = arx;(t)+d (t)] - ar[x;i(t)] - 1[x(t)] di(t)

(10)
der(xt) = er[jx t)+d,(t)] - cr[x; ,(t)] - Ar[jx,(t)] d-(t)

with similar formulas whenever a strain history is prescribed. Notice that
d = M[x;3(t)] d-o,, where M is the fourth order instantaneous effective compliance
tensor.

To proceed further, we make the usual assumption in plasticity that the history
dependence is expressed at every point x by the stress state and additional internal
state variables (i.e., back stresses) which we will collectively denote by a. In that
case, equations (10) reduce to

dur(;~t) = Br[X;O(x),af(x),Om(x),am(x)] do(t) I

(11)

dr(Xlt) = Ar[x;of(x),af(x),om(x),am(x)] die(t)

where or(x) indicates the stress state and ar(x) indicates the internal state variables

carrying information about the loading history at each point x of the phase volume
Vr* The implicit dependence on the spatial position x of the material points in V

will be influencd by the specific geometry of the microstructure. Br an.' Ar will be

called the instantaneous local stress and strain concentration factors.

The volume averages of the local fields are defined in the u~ual way by

V d V V- Br~x; afx), af(x), om(x), am(x)] d a dV
r r

SBr[of(,x),(x),om(x),am(x)] di,

(12)
dr= *r' der dV = r Ar[x;aix),(x),o'm(x),a (x)] de dV

r Vr Vr

SAr[of(),af(x),om(x),am(x)] de,

where Vf+Vm= V. The average concentration factors Ar, Br are genera functions

of the stress state and the internal variables in V at the instance of the application
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of the load increment. The evaluation of the concentration factors therefore requires
the knowledge of the deformation history pointwise for the whole representative
volume, which can be obtained by numerical solutions (i.e., Dvorak and Teply
(1985)).

To be able to utilize the averaging techniques and to extend the methods used in
elasticity, we further assume that the average concentration factors are
approximately equal to the concentration factors based on the phase averages af the
state variables, that is, they are functions of the average stresses or-<r(x)>and

the internal state variables arn<ar(x)> in the phases. We thus have the final form

of equations (12):

<dar> = Br[,rY~x), of(x), rm(x), o (x)] da 'Y Br(orf, orm, of, a,,) d o,

(13)

<der> = Ar[1O(x),Qf(x),m(),am(x)] di Y Ar(Uf,mGafam) die

It is evident at this point that the clastoplastic response of the r-th phase will
depend on the average elastoplastic response of both constituents (the same way as
the elasticity solution in a phase of a heterogeneous medium depends on the elastic
constants of all phases). The above assumption is a drastic one because it replaces
the average response to non-uniform fields of inherently inhomogeneous phases (due
to plastic deformations) by the response to the average fields of instantaneously
homogeneous phases. It requires that all instantaneous phase moduli

Lr[X;a 1x),clx),arm(x),am(x)] be replaced by Lr(af,af,om,am). The validity of this

assumption will be tested in Section 3 by comparing the analysis results with
experiments and numerical simulations. The basic consequence of the above

assumption is that the Eshelby solution for the ellipsoidal inhomogeneity now holds
since only some average change in the instantaneous properties is taken into account

and the phases are considered to be instantaneously homogeneous. Therefore, the
analysis presented in Section 1.1 applies for the calculation of the average
concentration factors, and, in particular, equations (5) and (6) can be used if the

material parameters are taken to be the instantaneous ones, depending on the phase
average stresses ar and the average internal state variables ar .

4
I
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2. Constitutive Description for Plastically Deforming Phases

The time independent elastoplastic response of the r-th phase in a composite can
be characterized by the following set of equations

de, dee + deP r r d r + dr (14)

rc r dr r0 (5
dePr dAA r(Ur,ar), da r  dr vr(arar), dAr _ 0, (15)

r(rq ) 0I , Or d 0 ,drd = 0 , (16)

where der is the phase average of the total strain increment and dee , dep represent

r r' r
its decomposition into an elastic increment and a plastic increment; or is the

average of Cauchy stress and ar a set of internal variables. Equation (14)

represents the commonly assumed additive decomposition of the total strain
increment into an elastic and a plastic part, where the elastic part is derived from
the elastic compliance by the generalized Hooke's law. The evolution equations for
the plastic strains in terms of a general non-associative flow rule and internal state
variables are given by equations (15). Or is the yield function of the material of the

r-th phase and equations (16) require that when Or<0 then necessarily dAr = 0, i.e.,

elastic response, and when dAr > 0 then or= 0, d4 r=O, i.e., plastic loading. The

last of these equations (16) assures that the loading point remains in contact with

the yield surface during infinitesimal loading.

In the case of homogeneous materials, the loading history is given either in terms
of strains or stresses as a function of time. The constitutive equations can then be
integrated, assuming that er or a, are known functions of time. In the case of

composite materials, the loading history is given in the overall space and hence
equations (13), relating overall to local quantities through the concentration factors,

must be utilized. Since the concentration factors depend on the instantaneous
material properties of the constituents, er or ar are not only determined by the

applied loading, as is the case for homogeneous materials, but they also depend on
the elastoplastic solution (i.e., the current moduli of the elastoplastic phases). As a
result, equations (14-16) have to be integrated simultaneously for all elastoplastic
phases since they are coupled through the concentration factors in equations (13).

I _________ ________m_____mlIII ss• I I
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To simplify the analysis, and also realistically model most of the fibrous composites

in engineering applications, we will assume that the fiber phase remains always
linearly elastic. This will result in the average matrix concentration factors being
functions of am and am, that is

dam = Bm(am,am) do , dem = Am(orm,am) di , (17)

thus decoupling the elastoplastic problem in the matrix from that in the fibers. The

concentration factors for the elastic fibers are evaluated by equations (7).

The integration of equations (14-16) can be carried out by different integration
schemes, as discussed in the work by Ortiz and Popov (1985). The same
methodology can also be applied here, with the necessary modification due to the
additional equations (17) that define the loading path for the matrix through the
instantaneous concentration factors. Referring to the work by Ortiz and Popov, it
can be easily proven that both the generalized trapezoidal and the generalized

midpoint integration schemes applied in our case provide first order accuracy for an
arbitrary selection of the parameter a and second order accuracy for a = 1/2 (a
denotes the weight of the contribution of the end point of an integration interval,
i.e., a--1 corresponds to the backward difference). The numerical stability analysis
for our case is more complicated and no general conclusions can be drawn because

the stability will depend on the micromechanical model used for the evaluation of

the concentration factors. For the backward difference method (C=l-) absolute
stability is obtained.

The backward difference method has been used as the integration scheme for

equations (14-17) in this work, and, by doing so, it is equivalent to having
neglected the path dependence of the matrix material within every step increment.

In order to maintain good accuracy, small time steps in the loading history have
been used. For the specific examples considered, the following assumptions have
been used for the constitutive behavior of the matrix material:

i) Associative flow rule,
ii) Mises yield surface, and
iii) Kinematic hardening (the internal state variable is the center of the yield

surface) with Phillips hardening rule (Phillips (1972)).
The Mises criterion reads:
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0b= (om-am)T C(om-am )-Yr< 0 (18)

where C is a 6x6 symmetric matrix, with non zero entries c11=c22=c33=1,

C12 =C13= 23 -- 1/2 and c44 =c5 5 c.=-3, and Ym is the matrix yield stress in

uniaxial tension. The flow rule is given by the equation

dEp = dA nm= dA Oom/Oam = dA C(am-am) . (19)

The Phillips hardening with Ziegler assumption leads to the evolution of the
internal variable % (Dvorak (1990))

dam = dA [(CImT n)/d Tnm d m = do , (20)
tm

where c=2H/3, with H being the instantaneous tangent modulus, and nk=nk for

k=1,2,3, nJk=nk/2 for k=4,5,6. The last equality in (20) results from the

consistency condition. For this particular case of Phillips hardening the backward
difference scheme leads to a set of expressions:

m = m e A.m AP= A mAam Aam, (21)•m In In m RY

amT
Aam =B N A -, Mm =  T + M e  (22)(c mn) m

where am, c, Bm  are all evaluated at the point (orm+Ar, am+Aom) andIn In m
Bm=(I-cfBf)/cm (Bf is given by (6)).

The matrix stress increment is found by solving the implicit system of equations

Aa m = Bm(am+Aam,am+Aorm) A'6. The iterative procedure consists of the

calculation of the elastic predictor given by

J  Be A-, j=0, (23)A m m
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which provides a first estimate of the stress increment in each phase. The
concentration factors are evaluated using the elastic material properties of both

phases. The above estimate is then corrected by

Au(j+) = Bi Sa , j=1,2,... , (24)

where the stress concentration factors BJ are evaluated using the material

properties at stress (rM+AamJ). The matrix material moduli are updated by

performing the elastoplastic analysis described above for matrix stress increment
A04. At this point of the analysis only the new stiffness or compliance matrices

are necessary (equation 22). Using the updated matrix moduli B J is calculated.

The convergence criterion is given by

11 ,( +l)  -, i 1
I n I =em < 7 m (25)

In

where ym is a given tolerance. If the tolerance criterion is satisfied, then using the

final values of the local stress increments Acrm = Ag( j+) the local quantities are

evaluated from equations (21). The total strain increment is given by

AE=cf Mff A + cm(Aep + e) (26)

where Bf is calculated from ( ) based on the evaluation of matrix moduli from (22).

The plastic and elastic strain increments in the matrix are computed from equations
(21). This concludes the calculations in the current stress increment. If a new

stress increment A3 is applied, the above procedure is repeated until the loading
path is completed.

In the case of Phillips hardening there is only one system of equations to be
solved, namely equations (22), for the matrix stress increments, since the evolution

of hardening is exactly equal with the evolution of the matrix stress (Aam=AGm).

For a general hardening model another set of differential equations needs to be
solved for the evolution of the internal state variables and, if the backward
difference method is employed, it will require the solution of an additional nonlinear
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system of algebraic equations. In general, therefore, for the backward difference
integration scheme, the following algebraic equations should be solved
simultaneously

Acm=Bm(Um+Am%,+Am) Am ,

(27)
Aa m=LAA Vm(am+Aoruam+Am),

together with the consistency condition O(um+Aam,am+Aam)=O for the

evaluation of Aam,A1am and AA. The iterative solution procedure described

previously can also be used for the above system with initial values based on the
e- Be Ai Aa=e =O( h l aig-ahi

elastic predictor, namely Aom = =BmO, Am=O, AA=O (the loading path is

prescribed in the overall stress space).

We briefly mention that if the loading path is prescribed in the strain space, the
differential equations to be integrated during plastic loading (i.e. whenever

Oorm+d e)>o ) are the following:

dam = Le (d.m-dA pm(A m,am)), dam = dA Vm(orm,am) , (27)

together with the consistency condition and the definition of the matrix strain
increment dem= Am(arm,am) die. The elastic predictor is given by d m=LmAmdi.

3. Comparison with Numerical Simulations - Particulate Composites

The prediction of the Mori-Tanaka method discussed above has been compared

with numerical results performed on a particulate SiCw-A1 composite. A composite

system with aluminum matrix and silicon carbide short fibers, periodically placed,
has been considercd. The results of the averaging methods have been compared
with those obtained using a periodic hexagonal array (PHA) model developed by
Dvorak and Teply (1985) and modified for particulate composites by Dvorak (1990)
and Lin and Dvorak (1990). The PHA is a micromechanical model based on a finite

dement discretization of the representative volume element (RVE). The geometry

of the whisker reinforcement is taken to be similar to a hexagonal prism. A
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volumetrically equivalent ellipsoid to the given prism was obtained assuming two of
its principal axes equal and using the conditions that both the prism and the
ellipsoid have the same volume and they correspond to the same volume fractions.
The following properties are chosen for the numerical calculations: Aluminum:
Ea=72 GPa,v m=.33, Ym--0 MPa (initial yield stress in tension), Hm= 14 .5 GPa

(linear hardening). Silicon Carbide: Ef=430 GPa, vf=. 25. The whisker

reinforcement was considered elastic until failure. For the matrix material Phillips

hardening rule was adopted to model the kinematic hardening, while the yield
surface was defined by the Mises yield criterion.

Figures 1 and 2 show the numerical results of the PHA model together with the
results from the averaging techniques for multiaxial proportional loading
(i33 =2 1 3 ) for the SiCw/Al short fiber composite. In addition to the

Mori-Tanaka averaging scheme for the evaluation of the concentration factors, the
self-consistent (Hill (1965), Budiansky (1965)) scheme is also plotted for
comparison purposes. For monotonic loading the Mori-Tanaka predictions are
closer to the numerical results than the self-consistent predictions, which
underestimate the total strains. In addition to its better accuracy, the convenience
of using the Mori-Tanaka method, with respect to the self-consistent, becomes
more evident when the computer time is considered. In fact, because of its implicit

nature, the self-consistent model requires, on the average, five times more CPU
time than the Mori-Tanaka method.

It is of interest to compare the yield surfaces predicted by the averaging
techniques with the PHA results. Figure 3 shows the initial yield surfaces as
predicted by the PHA numerical scheme and the Mon-Tanaka and self-consistent
averaging schemes. The initial yield surfaces are not very different and the Mori
Tanaka yield surface is a better approximation than the self-consistent yield
surface, which predicts higher initial yield stresses. Figure 4 shows the yield
surfaces at the end of the non-proportional path (95,0)-.(95,40) in the overall
(' 33 ,i1 3) stress space. The PHA surface is obtained as the envelope of the yield

surfaces of each numerical integration point of the finite element mesh (Dvorak
(1990), Lin and Dvorak (1990)) and, even though locally the matrix behaves purely
kinematically, the overall response of the composite presents a macroscopic isotropic
softening due to different motion of the local yield surfaces. On the contrary, the
averaging techniques are not able to produce a change in the yield surface size if
only kinematic hardening is considered for the matrix. This remark is general and is
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valid for every averaging model based on a single matrix yield surface and assuming
that the matrix is incrementally homogeneous. Even though subsequent yield
surfaces show larger differences between PHA evaluations and averaging models in
their sizes, it can be observed from Figure 4 that, so long as unloading does not
occur, the plastic strains predicted by the three models will be close because the
yield surfaces coincide at the contact point with almost identical normal vectors.

4. Discussion

The predictions of the Mori-Tanaka method and, to a lesser extent, of the
self-consistent method for the constitutive behavior of a whisker reinforced
composite are close to the prediction of numerical simulations. In general, good

estimates are expected for particle reinforced composites with elastoplastic matrix
where the matrix is free to yield in all activated slip planes. For fibrous composites
reinforced with stiff fibers, such as boron fibers, and for loading paths that induce
matrix dominated mode plasticity, the averaging schemes might nct yield accurate
results. This is the subject of an ongoing investigation to be published elsewhere

(Lagoudas et al. (1990)).

A remark concerning the validity of the use of averaging techniques to model the
constitutive behavior of elastoplastic composites based on the Eshelby solution for
the inhomogeneity problem is appropriate. The main advantage of Eshelby's
solution is the prediction of uniform stress and strain fields for the inhomogeneity
when embedded into an infinite matrix under the application of uniform stress or

strain fields. But the fields outside the inhomogeneity are not uniform and, for
most engineering applications, the matrix yields at applied loads well below the

design limit. The nonuniformity of the matrix stress field induces a nonuniform
plastic strain field, which destroys the homogeneity of the instantaneous moduli of
the matrix and renders the Eshelby solution inside the inhomogeneity invalid. The

basic assumption, therefore, of the averaging methods (equation 13), to replace the
average instantaneous concentration factors by those induced by the average phase
fields, might not be accurate for complex non-proportional paths.
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Appendix

Numerical Evaluation of Eshelby's S Tensor

Consider an infinitely extended homogeneous linearly elastic medium with an
ellipsoidal inclusion of volume V and of the same material imbedded in it. A
rectangular Cartesian coordinate system xi, i=1,2,3 is introduced such that the

origin coincides with the center of the ellipsoid and the three principal axes of the
ellipsoid, al,a2 ,a3 are aligned with the Cartesian axes xi. If the ellipsoidal region
undergoes a uniform, stress-free transformation strain Ejt the resulting strain field

ii,
in V is uniform and is given in terms of the well known Eshelby tensor S (Eshelby

(1957))

S 1-S (Al)

Ro tjk ,
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where Six are the Cartesian components of S and they are in general a function of

the stiffness tensor Lo of the infinite medium and the shape of the inclusion.

For a generic anisotropic material the Eshelby tensor is given by the following
surface integral, parameterized on the surface of the unit sphere (Mura (1987)):

+1 2v
Sikl -

d ( 3 O 13 J0 {Gimj")+G n dw, (A2)

where

Gkl( =TkTlNijf-()/DC-()

T= C/at
¢1 = (1-C3) 1/ 2cOsW

C2 (1-42)I1/2sinw (AM)

D(") = EmnlKmlKn 2 Kl3

Nij(j) 4 ikl tjmn Kkm Kin

Kik = LO jl
ijl

with te being the permutation tensor and LO the components of the stiffness
ijkl

tensor Lo .

In some special cases, such as for isotropic and transversely isotropic materials
and for different values of the parameters ai, the quadrature in (A2) has been

performed in closed form and a review of these results can be found in Mura (1987).
For the case of a fully anisotropic material, no explicit formula for Sijl has yet been

obtained, and the only result available is a computer program by Ghahremani
(1977), which evaluate numerically the components of S. Ghahremani used for the
numerical evaluation of S a formula different from (A2) with a different
parameterization of the unit sphere and, according to the author, and to our direct
experience, the program's accuracy depends on the values of the aspect ratios al/a 2

and al/a 3 for given material anisotropy.
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In this work we develop a numerical scheme for the evaluation of Sij d based on

(A2). The double integration in (A2) is performed using the following Gaussian
quadrature formula

1MN
i 2 E L n Gimjn(wq' ( 9 ) Gjmin(Wq' (3p)}WpqI

(A4)

where M and N refer to the points used for the integration over (3 and w,

respectively, and Wpq are the Gaussian weights. M and N are not fixed numbers in

the program but they are selected according to the ratios al/a2 and a1 /a3 so that

the maximum error in the evaluation of the components of S occurs after the sixth
significant digit.

In order to demonstrate the capabilities of the computer program, some selected
results and comparisons with available exact evaluations of S are given in the

following. Notice that to simulate cylindrical inclusions and penny shape cracks
al/a 3 was set equal to 10-  and 1040, respectively.

i) Isotropic materials.
For different values of the Poisson ratio v, of the matrix material, three types of

inclusions were chosen so that they represent most of the common shapes of
inclusions in composites.

a) Spherical inclusion (al-a 2=a3). For M=4 and N=16 the exact evaluation of

S (using double accuracy) is obtained.
b) Penny-shape crack (a3-40). In this case it is sufficient to consider M=2,N=2

in order to obtain the exact evaluation.

c) Cylindrical inclusion (a3-w). Table I shows the number of integration points

necessary to achieve accuracy up to six significant digits and makes a comparison

with the results of Ghahremani's program, which always uses 32 x 32 = 1024

Gaussian points.
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a1/a2  M N Accuracy (# of significant digits)
Present Program Ghahremani (1977)

1 2 16 exact exact

2 2 46 6 6

5 2 100 6 3

10 2 160 6 2

20 2 280 6 2

50 2 400 6 2

Table 1. Accuracy in the evaluation of S for cylindrical fibers with

elliptic cross-section for an isotropic material.

ii) Tranversely isotropic materials.

In the case of a cylindrical inclusion with circular cross section the evaluation of S is

exact if M=2 and N=16 for different combinations of the four independent ratios of

the five material parameters.

iii) Anisotropic Materials.

For the extreme case of a cylindrical inclusion the values of M and N, necessary to
-. give the required accuracy of six significant digits, depend on the value of the ratio

al/a2, as well as the values of the material parameters. Table 2 shows the number

of required Gaussian points. Since for these cases no e:act results are available for

comparison, the values of M and N in Table 2 must be regarded as the minimum

values of M and N, such that the entries of the Eshelby's tensor up to the first six
digits remain unchanged if M and N increase. More details for the case of
anisotropic matrix materials can be found in Gavazzi and Lagoudas (1990).

aa 2  M N

1 2 100
2 2 100
5 2 160

10 2 300
20 2 600
50 2 1000

Table 2. Gaussian points needed for the exact evaluation of Eshelby's S tensor

up to six significant digits for a cylindrical inclusion in an anisotropic
matrix material.

..~
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Global and Internal Time Dependent Behaviour
of Polymer Matrix Composites

A.. Cardon*

Introduction

Polymeric materials exhibit specific time dependent effects under mechanical and

environmental loading histories. The fibers used for the reinforcement of the

polymeric matrix are generally elastic or elasto-plastic, but may even be

viscoelastic. The polymer matrix composite is a multiphase continuum in which

elastic and visco-elastic phases interact over interphase regions. Even with a high

volume fraction of elastic components (between 0.55 and 0.65), this multiphase

continuum has a basic viscoelastic behaviour, oriented or not.

The most specific viscoelastic behaviour is observed on a unidirectional

reinforced polymer composite lamina under in plane loading in the transverse

direction. The viscoelastic behaviour changes in relation to the angle between the

loading direction and the fiber orientation becoming elastic if those directions

coincide.

In a laminate, built up with lamina reinforced in alternated directions, the

characteristic global response times for the viscoelastic behaviour are shifted to

longer periods so that an elastic behaviour over a limited time range is observed.

Professor, Composite Systems and Adhesion Research Group of the Free
University of Brussels - COSARGUB
VUB (TW - KB), Pleinlaan, 2, B-1050 Brussels - Belgium.
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For the study of this global behaviour a laminate analysis can be performed

over the individual lamina with their anisotropic viscoelastic-elastic in plane

characteristics.

Related to this global behaviour are the internal stress transferts between the

elastic and viscoelastic components. Those stress transferts occur not only in a

lamina between matrix and fibers, but also between lamina, function of the

respective fiber orientations. For the analysis of these stress transferts the

hypothesis of perfect adhesion between fibers and matrix, and between lamina is a

necessary assumption. Corrections on this behaviour for rupture of adhesion

between fibers and matrix, and for delaminations may later be introduced.

The global viscoelastic behaviour combined with the internal stress transferts

influences the long term behaviour of the polymer matrix composite and must be

taken into account for the durability analysis of the composite component under

mechanical and environmental loading histories. For such a durability analysis the

relation between short period tests under different extreme loading conditions and

the long term behaviour under normal loading conditions must be established and

verified experimentally.

A general thermodynamic based viscoelasticity theory, as proposed by R.

Schapery and co-workers, is an interesting framework for such extrapolations to

long term behaviour from short time test results.

1. Creep of unidirectional reinforced laminates

On specimen of 8 layers, cut out at different angles from unidirectional reinforced

plates, with thickness of 1 ,nm (± 0.04 mm), transverse dimension of 25 mm (+

0.2 mm) and active length of 165 mm (± 1 mm) creep tests were performed at

different stress levels and at different temperatures. Some examples are given

below.

•-,a.
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Figure L.a gives the obtained creep results on APC-2 over 8 hours for stress

levels of 0.6, 0.65, 0.7, 0.75 and 0.8 of the rupture stress for 5 = 150, (or = 333

MPa) at room temperature.
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Figure Lb gives the same creep results at the same relative stress levels for 0=45',

(ar = 125 MPa) at room temperature.
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Figure 1.c gives the creep and creeep recovery results obtained on a graphite-epoxy

specimen of the same dimensions under 0.6 and 0.7 of the rupture stress for 0- 15'

at 950C for 120 hours creep time and 120 hours recovery time.
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2. Creep of general laminates

For a laminate with alternated stacking sequences the global creep and creep

recovery effects are reduced in a proportion that can be estimated by the numer of

0' lamina, constraining the viscoelastic behaviour of the other layers. The creep

behaviour can be predicted by laminate programs as was described by M. Tuttle

and H. Brinson, [1]. At higher temperature levels the creep is accelerated. If part of

the mechanical loading is of oscillating type there is interaction between the two

type of loadings with an important increase of the creep behaviour as was shown

by J. Bax, [2], and later by J. Lee and F.X. de Charentenay, [3].

Within the linear viscoelastic range creep and relaxation characteristics can be

obtained by dynamical testing for the measurement of the real and imaginary part

of the complex modulus. This can be done over limited frequency ranges at

different temperature levels so that by application of the time temperature

superposition principle the results are obtained over a large frequency range for a

reference temperature as was suggested by H. Brinson, [4].

3. Durability analysis

The stress level can be used as accelerator for the evolution of the behaviour of the

polymer matrix composite laminate by a combined Time-Temperature-Stress-

Superposition principle proposed by H. Brinson and co-workers, [4], [5].

If the short term tests are carried out at high stress levels the viscoelastic

behaviour of the composite becomes nonlinear and in order to analyse the results a

set of nonlinear viscoelastic constitutive equations are needed.

For this analysis the nonlinear viscoelastic theory, based on irreversible

thermodynamics, proposed by R. Schapery, [6],[7],[8] is very well adapted.

1'
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The possibility to use this Schapery formulation for long term predictions was

studied by H. Brinson and D. Dillard, [9], and by M. Tuttle and H. Brinson, [1].

Further specific aspects were developed by C. Hiel, [101,[11], by R. Brouwer,

[12], for biaxial stress fields and by X. Xiao, [13],[14] for thermoplastic resin

composites.

As example Figure 2 gives the variation of the shear compliance as function of

time and shear stress obtained on APC-2 by X. Xiao, [13].
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4. Internal stress transferts in a polymer matrix composite

If there is a perfect adhesion between matrix and fibers the strain being the same

there is an instantaneous stress distribution between fibers and matrix under a

given in plane stress program followed by a transfer of the stress from the matrix,

(viscoelastic, presenting relaxation efforts), to the fibers.

The same type of stress transfer happens between adjacent lamina with non

coinciding elastic directions.

In order to analyse in a simple way this aspect of the viscoelastic behaviour of

the polymer matrix composite we consider a sandwich beam element where the

two outer layers are elastic, the central core being viscoelastic.

For simplicity we consider a one-dimensional case and we assume the

viscoelastic layer of the type 3-parameter standard solid material:

E

Eo E

d+ - +ld  E dt 1 ) a  (4. 1)

Starting from the following relations:

Eee= ce (4.2.a)

.... 1 . 'v+ 1 I  (4.2.b)

dt T E.dtT 0 EV
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S~ae+ Savv=a(S,+ Sv) (4.2.c)

Ee = Ev= E (4.2.d)

we obtain the constitutive differential relation for the sandwich element as:

I I 0

de+IEE=S+S c + ((4.3)

with

E. +SE- So+ S

-=0t ;S 6 E +SvEo=A; -.- V~ ; -o (4.5)E A A

If we impose 0 = CTo H(t), we obtain the creep function k(t) as :

k(t) = a- L [ 1+ a + a(N-1) e(+ ] (4.4)

With this creep function it is now possible to obtain e(t) under a given stress

variation '(t) and with the conditions (4.2) we obtain ae(t) and av(t).

This analysis can be generalised for a lamina and afterwards between lamina

when the fiber orientations are rotated over an angle or.

Particularly this a~aalysis shows that even under constant loading conditions

stresses are transferreL2 between matrix and fibers in every lamnina and between

lamina.
Under changing loading conditions these local strere variations can act as local

sources for damage propagations.
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Numerical predictions and experimental verifications of these local stress

changes and their consequences on damage evolution are worked out on the basis

of symmetric laminates (0,90).

Conclusions

The viscelastic nature of the polymer matrix induces time effects on the global

behaviour of the polymer composite. As consequence the thermomechanical

characteristics of the polymer composite will change during time. These variations

are accelerated by temperature, stress level and moisture diffusion.

As consequence there is a need for the prediction of the long term behaviour of

the thermomechanical characteristics of the polymer matrix composite. The

thermodynamic based model of Schapery seems a good basis for this long term

behaviour predictions.

A general durability analysis must combine the effect of different types of

loadings, mechanical and environmental ones, their interaction and the consequent

limit behaviour of a composite element. The most promising methodology is

based on a damage ana. sis integratiag the different specific results of the different

loadings and their interactions.

The juxtaposition of elastic and viscoelastic elements in a lamina and the

presence of different elastic orientations in adjacent lamina in a laminate results in

a local permanent redistribution of stresses between matrix and fibers, and between

lamina. The analysis of these local changes is important for the study of the

damage propagation in a polymer matrix composite element.

l: n nlm m nm n 1
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A Local-Field Theory for the Overall Creep of
Fiber-Reinforced Metal-Matrix Composites

Y.M. Wang and G.J. Weng
Department of Mechanics and Materials Science

Rutgers University
New Brunswick, NJ 08903, USA

Abstract

A local-field theory is developed to calculate the development of
the overall creep strain of a fiber-reinforced metal-matrix
composite, where the creep rate of the constituents may depend
nonlinearly on the stress and both phases may undergo the
primary as well as the secondary creep. The theory is constructed
with the combination of Eshelby's equivalent inclusion principle,
Kroner's elastic constraint, Mori and Tanaka's mean-field concept,
and Luo and Weng's local solution of a three-phase cylindrically
concentric solid; it is intended for the low to moderate fiber
concentration within the small creep-strain range. The theory
thus developed also serves to evaluate the accuracy of the simpler
mean-field theory, which is found to be reliable enough for both
the axial and the plane-strain, biaxial tensile creep, but generally
less so for the transverse tensile creep, and the transverse and
axial shear creep. As compared to the longitudinal tensile creep
data of a Borsic/aluminum composite, the theoretical prediction,
though slightly lower, appears to lie within an acceptable range
of accuracy.

1. Introduction

This paper is concerned with the development of a theoretical
principle for the determination of the overall creep strain of a
fiber-reinforced composite under any constant, combined stress.
Our focus here is on the metallic constituents, whose creep rate
depends nonlinearly on the stress and, due to work-hardening,
both primary and secondary creep may be present. We take the
fibers and the matrix to be both capable of creeping, and are
perfectly bonded together. The circular fibers are aligned and
homogeneously dispersed in the matrix so that the composite as a
whole appears to be transversely isotropic.

Under a constant external stress, the initial response of the
composite is elastic and the overall elastic strain can be
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determined from its effective elastic moduli. The initial elastic
response is then followed by the time-dependent creep, whose
local creep-rate depends on the local stress and creep strain
according to the constitutive equations. Such a time-dependent
deformation leads to a continuous stress transfer between the
constituents and, even within each phase, the stress field is also
constantly changing as a result of heterogeneous creep. A precise
analysis of such a nonlinear, time-dependent, and heterogeneous
problem is not a simple one and, as it stands now, no exact
solution seems to exist for this problem. The method to be
proposed is an approximate one; it is primarily based upon the
combination of Zhu and Weng's (1987,89) mean-field theory for
time-dependent creep and Luo and Weng's (1989) solution for the
stress field in a three-phase cylindrically concentric solid due to a
"stress-free" transformation strain in the central fiber region. Zhu
and Weng's theory in turn was derived using Eshelby's (1957)
equivalent inclusion principle, Mori and Tanaka's (1973) concept
of average stress in the matrix, and Krtner (1961) and Budiansky
and Wu's (1962) elastic constraint approximation, in the treatment
of average-stress redistribution between the constituents during a
time-dependent creeping flow. In this mean-field approach, the
average creep-rate of a phase is calculated directly from its mean
stress and mean creep strain according to the constitutive
equation; the information regarding the local stress and strain
inhomogeneity within each phase is therefore not required. To
be rigorous, however, the mean creep-rate of a phase ought to be
calculated from the mean of its local creep-rate, each determined
at the level of its local stress and local creep-strain. If the creep
rate were to depend on the stress and creep strain linearly (as in
many polymeric materials), these two approaches would have
yielded an identical result. For the metallic constituents, the
stress exponent n usually lies between 3 to 7, and therefore, the
mean-field approach will invariably underestimate the average
creep-strain of the phases and consequently of the composite. At
a dilute concentration, however, the stress field in both phases
tends to be more uniform and therefore justifies the "mean-field"
approach. Zhu and Weng's theory (1987,89) thus developed was
indeed directed towards such a condition, where particle
concentration of 5% was specifically investigated. The
incorporation here of Luo and Weng's (1989) solution for the
heterogeneous stress field is aimed at a somewhat improved
concentration, though still not yet at the "finite" level. In this
same spirit a local theory for the creep of a particle-reinforced
composite has also been developed recently by Zhu and Wepg
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(1990), using Luo and Weng's (1987) solution of a three-phase
spherically concentric solid. It must be borne in mind though
that the adoption of Kroner's (1961) assumption of an elastic
constraint for a creeping (or plastic) matrix implies that the
theory thus constructed is suitable only for the small creep-strain
range; applications to a large creep strain (say one or two orders
of magnitude higher than the elastic strain) can result in a
significant underestimate for the overall creep strain.

2. Constitutive Equations

We shall refer to the matrix as phase 0 and fibers as phase 1.
Both phases will be taken to be elastically isotropic for simplicity,
with the bulk and shear moduli denoted by x r and ur,
respectively, for the r-th phase. The corresponding volume
fraction will be denoted by cr such that c0 + c1 = L

Under a constant tensile stress a, the steady and primary
creep rates of the r-th phase usually can be written as

- c~r)n rcc(r) .(,(r)) ,

• c(r) nr
cp _br.[dr. ((r) _,c(r)], r = 0, 1 (2.1)

where ar, n, br and d_ are the material constants for the r-th
phase, whicA can be readily determined from two tensile creep
curves. This set of constitutive equations is seen to be general
enough to cover those of a viscoelastic solid (n=l) or nonlinear
steady creep only (b = 0). The total creep rate at any instant is

S"*c C *C
given by the sum of the two ec cs + e where the primary
creep rate will decrease with increasing crep strain (as a result
of strain hardening) and is set to zero numerically when ec

reaches the critical value d -a .
To account for the multiaxial stress and strain state, von

Mises' effective stress and strain are introduced

2 ii iico!.(r) =(Z ci(r) ic(r))1/ 2 ,(2

'3 ii ii

where a!. is the deviatoric part of aij. Equation (21) is then
ti

modified to

:t-
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*c(r) a( (r) r
a

s r( 0 ()T
nr

*c(r) br [dr (,a(r))r _*c(r)], r=0, 1 (2.3)
p

with Cec =c*c + ;*c. The creep-rate components then follow
from the Prandtl-Reuss relation

3 =- r ,.) r=0,1. (2.4)
ij 2 .(r) ij

Thus at a given stress a-- the effective stress a* can be
calculated from (2.2) and the elfective initial creep rates from
(23). The creep-rate components are then available from (2.4)
which, over a time increment dt, gives rise to an incremental
creep strain dc f E.. dt. This is to be added to whatever the

ij ij
existing ,c(t) to yield a new J(t+dt), leading to a new Ec for the

next time increment.

3. The Initial Elastic State

The Mori-Tanaka (1973) method will be applied to determine the
initial strain of the composite and the mean stress of the
constituents. The equivalent transformation strain derived also
allows us to use Luo and Weng's (1989) solution to evaluate the
heterogeneous stress field in the matrix which, together with the
mean stress, permit us to calculate the initial local creep rate at
its field point.

To place the theory in perspective, we recall from the Mori-
Tanaka theory that when the composite is subjected to an
external boundary traction giving rise to a uniform stress a, the
strain of the comparison material, with the elastic moduli tensor
L, is given in terms of the familiar symbolic notations by (see
Weng (1984), for instance)

LO a, (3.1)

and the average stress of the matrix can be written as

5(0) i c + r i L0 e(0) L(e 0 +,) (3.2)

IT

1
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where Z is its mean variation from e such that when c1 - 0, -4

0. Henceforth it is to be noted that whenever a and c appear
without the indicial components, they represent the general stress
and strain tensors, respectively. The average stress of the fibers,
in terms of its own moduli tensor and of Eshelby's (1957)
equivalent inclusion principle, can be written as

(1)= + + apt L-(1) = Ll( O+Z+ePt) = L0 (C0+ +Ept..),
(33)

where e* is Eshelby's equivalent transformation strain (or
Kroner's (1958) polarization strain, Mura's (1987) eigenstrain)
introduced into the fiber regions so that L, can be replaced by L0

to yield the same '1). Furthermore, the average perturbed strain
in the fibers is assumed to be connected to E* through

ept = S C*, (3.4)

in terms of Eshelby's S-tensor, and the condition cr ( r ) also
leads to

e = cl(ePt_*) e cl(I-S)*, (3.5)

where I is the symmetric, fourth-rank identity tensor. This set of
equations provides the equivalent transformation strain

C* = A*e0  A* = -(Li+LoXc 1I+cS)+Lo'(L1-LO). (3.6)

The total strain of the composite is given by F = ECr ( r

leading to

= + clc. = (I+clA*)eO0 (3.7)

Then recalling the effective stress-strain relation J L= , one
arrives at the effective moduli

L = Lo(I+cIA*y, (3.8)

for the system.
With the circular fibers the non-vanishing components of

the S-tensor are

.OM"
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=5-4yw 4vd-i2222 8(-o S2233 8(-o

S3322 - 0(-o

S21 3311 2(1O) S2323 = 8(1kv 0 ) (39

S1212 = -11 1

where v' is the Poisson ratio of the matrix, direction 1 is the fiber
axis, anS plane 2-3 the cross section. With these components the
five independent elastic moduli of the composite are known to
coincide with the expressions of Hill's (1964) and Hashin's (1965)
lower bounds if the matrix is the softer phase (see Zhao et al.
1989

4c c (v _v )

1/1 l~ + ~l/ + 10 1 0 0 Y

~12 = c~a. 1 + c lr0 c c 1 -/i 6 / 1 )

C2 3 = IC0 +1

012 A I0+ rO+cj

c
23 AO (3.10)

where Ell, v12, K23, A 2 3 are the longitudinal Young's modulus,



507

major Poisson ratio, plane strain bulk - modulus, axial and
transverse shear moduli, respectively, and PKr is the plane-strain
bulk modulus of the r-th phase. This set of moduli allows us to
determine the initial strain of the composite c under a given a.

Although the stress field in the matrix is heterogeneous,
that in the fiber is generally less so and therefore the mean-field
approach can be reasonably used to calculate its mean creep-rate.
From (3.2), (3.5) and (3.6), one has the mean stress for the matrix

BO)= B0, B0 = I+clL0 (I-S)A*L 01, (3.11)

and, with which, the mean stress of the fibers follow from

B( ) =C1l (-coa-0)), (3.12)

which is identical to (33). Thus central to the determination of
a0 ) and a(1 is e*, which is also needed for the determination of
the heterogeneous stress field in the matrix. ,

For circular fibers aligned along direction 1, the c in (3.6)
can be expanded into the following components

* 0 0 0

fi = a~fll + 2(C2+33

2-2 3 11 422 53'

, = a*o + a*eo + ,O
33 3 11 522 433'

, 0 * ,0 e 0
'12 = 16'12' 13- E13, 23 (a-a) 3  (3.13)

where
.. L+..2_ 2v -1 ( r0- + I _ _ +  __ _ J,

cop 2('-3c o) - l- ApA0

*- L ( W

2 41-Ko Ar.o
0
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C-Op 2(l-w 3c0 rK1-K0- A1-A0

4 2 u 1(,pj-AO)cO[4(1-vO)j 2cop 3c0 kl-co j~j-AO

a5 2 tsj/(pi-po cOI 4(-wvo~] 2cp 3c0 o L + 'I

a6 =pGroc/' (3.14)

and

p ab)(1 +a+2b)-2b( 0O + b),
2(l-vo) 2(lwvO)

Co(Mrpo) 3c0 r--rO pi-yo

Similarly the mean stress of the matrix in (3.11), now written
in its deviatoric (primed) form for ready calculation of the creep
rate, has the components

c X 1-2v 1-2vwB10 1 1 2 0 01
11 Co 11 C2 p 'IAJ-'0 0 'i-/Co -3 T-I "1 9 1-O k kI

0

C pK1-2v c'+a 1-2v
~,O)L~ .... L.........1 L 1 2 0 22 33 1 0 akk

22 CO22 C2 P IA CO K1 -K 0  3 1-v0  2 18 1v k
0

c p,
+ 0 'i2 53

+-Oj)O14g(-,~
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-,( )1, ~2 -2 '+5'f 1-2v033 ~ ~ ~ ~ ~ _O 2 i- 0 C I~K 2 33 1 0-

03 C 3C poc po31v 18 1-vo Okk]

1-cO(pj-puO)44p 1(1-vO)I cp322

C XC 1 + &, 5 -1 v
Zr(0) 1 L . [ 0 5-4w 'kk
kk ~ 0 k c2 p xl-IcO 2(1-vo) 11 (O(11) 61w)~k

_(O) _ "1p"0Z'(0) P '1"0 -

1r2 (1+c)+cp Gr12 ~ 13 (1+cj)tp1+C~ - 13 ,

(0) - (3-4wv)/[4(1 -L, )J1(,uf AO)+P 3.6
23 {c1+c0(3-4v0 )I[4(1-v,0)]}(pI-p0o)+p0  a23 (316

The mean stress of the fibers follows from (3.12), which can be
used in its constitutive equations to calculate its initial creep rate.

It may be noted in passing that when both phases share the
same elastic moduli, the following relations can be used to
simplify the foregoing relation

K1 =0, A1 0
P(XCFICO) 'P(Al-PUO)=

To determine the initial local creep-rate in the matrix, we
now construct its initial heterogeneous stress field associated with
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4. Local Stress Distribution in the Matrix Due to An Eigenstrain
e.*. in the Central Fiber

It must be noted at the outset that the solutions to be listed in
this section not only serve to determine the initial stress
distribution in the matrix, but also the change of its stress field
during the subsequent creep under the assumption of Kroner's
(1961) elastic constraint.

The displacement field in a three-phase cylindrically
concentric solid due to an eigenstrain E* in the central fiber was
recently derived by Luo and Weng (1989), where the circular fiber
is embedded in the matrix, which is further embedded ill an
infinitely extended medium with the property of the composite.
The radii of the central fiber and the intermediate rrtrix were
denoted by a and b, respectively, so that c1 = (a/b) . One is
reminded that though both moduli L and L0 appear explicitly in
the following auxiliary solutions, the values of L1 should be
replaced by those of L 0 in actual detemrination of the local strain
field of the matrix (in accordance with the equivalence principle).
Luo and Weng's (1989) notations - including a, b and p below --
are kept here; they bear no relations with those appearing
elsewhere.

4.1 Strain field due to E*
11

In this case the nonvanishing components of the strain field are,
in cylindrical coordinates

En= (a2 2)(0)E = (a2+a3 b)l 41
rr r2 ' 00r (4.1)

where, in terms of Lame constant Ar of the r-th phase,

a2 = -c1, 1(A23-A0)/p, a3 = cl,10 0+ 23)p

p = 2[(l+OX7+,A23)-cl( l- oXi23-o)]. (4.2)

(Thus in application of the equivalence principle , and K, here

must be replaced by x0 and tc0, respectively, as stated above).
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4.2 Strain field due to biaxial stretching e22 e33
22 33

The results are the same as in (4.1), but with a2, a3 and e* replaced

by b2, b3 and e2' respectively, such that

b2 = -2clk1(A2 3-A0)/p, b3 = 2c 1 1(js0+p 2 3)/p. (4.3)

43 Strain field due to an axial shear * E*
12 21

The results are

zr 2h2-h3 r2 c s c 'zr
(4.4)

en0 I (h2+hr. h • sinO
zo '2 2 2 12 '

where

h2 = -2c 1p1(A12-A0)/q,

h3 = 2c1#1l(A12+,u0)/q ,

q = (1+M'OXPO+12-cl(l-puoXIA12-AO), (4.5)

and 0 is measured from the 2 to the 3-axis.

4.4 Strain field due to a transverse shear e= -e3 e*

This is a more complicated problem and the solution was found
with the aid of Christensen and Lo's (1979) formulation. The
results are

(O)= [d3+3d 4 (i7O-3) -2M5 d6(17o+l) e* cos2e,
rr b2 r4  r-

, , .
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JO) - [d3 +3d 4(+1) L2+ 3d 5 h -- d6(t~O-3) 1Ie* cos20
b2 r4 r2 (4.6)

(0) =[d 3 +6d 4 L 2 - 43d - 2d Ie* sin20r# b-" 3d r4- d r2

where P0 = 1+2ju0/R, The coefficients di were found to be

di = iF, i=1,2,...,8, j=1,2,... ,8, (4.7)

where for the four di in (4.6), the Eij components (i 3,4,5,6) are

/1 0  0 -1 0 3/c 1 2 4/c1  0 0

Eij  -' IO 6j4j/j0  1 -6c1  3/c12  2/c 1  0 0 (4.8)

0 0 1 6r-3  I n0+ -1 -(T C+)

o o -1 q0+3 1 -070-1) -1 (7C-1)

with tc = 1+2/123/x2 3 for the composite, and for the Fj its
transpose is

FT = [0, 0, #1/O, -jsl/u0, 0, 0, 0, 0], j=1,2, .. ,8. (4.9)

With these four types of eigenstrains, any E.. derived in
Section 3 or in the next section for the subsequent 'ireep can be
expressed by a proper superposition of these pairs. These strain
fields are given in the cylindrical coordinate and it must be
transformed back to the Cartesian one; then the corresponding
local stress field follows as

o(0)(x) - L0 (O)(x), (4.10)

in the matrix.
The volume verage of o(0)(x) in (4.10) does not always give

rise to a mean (0) which is identical to (3.15); to ensure such a
self-consistency the local stress field in the matrix is calculated as

I w
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a(O)(x) = &( 0 ) + L0 (e( 0 )(x) - <e(0)(x)>), (4.11)

where <.> denotes the volume average of the said quantity. The
stress field in (4.11) then can be used in the constitutive equations
(2.2) to (2.4) to calculate the local initial creep rate of the matrix

c(0) (x, t=o

5. Stress Variation in the Fibers and Matrix
Following an Incremental Creep

As in the elastic case we first consider the mean-stress variation
in both phases and then the local-stress change in the matrix.

Once the creep rates have been calculated, the mean
incremental creep strains of the constituents over a time
increment dt are

di ( 1) = ic(1)dt, for the fibers
(5.1)

dic(O) = <*c()(x)>dt for the matrix,

where at any generic tm ;n4.() ane c(0)(x) ari.jalculated c,,the
corresponding levels of a1) and ec k1), and of a )(x) and ec Y)(x),
respectively, according to their constitutive equations.

To find the average stress variations in both phases we first
fictitiously take the fibers ot of the matrix and let both creep
separately by de ( 1) and d "c(0 ) without any constraint. This is a
truly "stress-free" process (incrementally) in the sense of Eshelby
(1957), and, now to place the crept fibers into the deformed holes,
the misfit strain is identified as

de* = dC(l)dic(O). (5.2)

Under the assumption of the elastic constraint in the matrix, the
mean stress variations can be found by the process similar to (3.1)
to (3.5). This time, however, the incremental boundary condition
is da = clda( 1) + c0o() = 0. In parallel to (3.2) and (3.3), we have
the mean-stress variations

do(O) = d Lode (0) = Lodi , (53)

in the matrix, and remembering that the fibers now possess a
misfit strain de*,
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da ( l ) =da + d p t --Ld () = L(di+dePt-de*)

= L0(d+dePt-de*-de**), (5.4)

where de** is the incremental equivalent transformation strain,
and de*+dE** together forms the total value of the transformation
strain during the incremental _process.

The perturbed strain dePt is now given by

dePt = S(de*+de , (5.5)

and the boundary condition dd' = 0 leads to

& = cl(I-SXde*+de**). (5.6)

The analysis can be carried out in a similar fashion, giving
rise to

de* + dc' = [(Ll-LoXclI+cS)+Lo-lLjde*, (5.7)

where de* on the right is readily available from (5.2). To find the
overall creep strain of the composite we remember that a prior
homogeneous dEcwi had already taken place before the crept
fibers were placed back to the deformed holes; thus

d c = dc(O) + c0d + cl(dC+deP t ) = d Fc (0 ) + cl(de*+dc*). (5.8)

The average-stress variation in the matrix then follows from (5.3)
and (5.6)

d c( 0) = ClLO(I-SXd e*+de**), (5.9)

and for the fibers

d&(1)= c0 /cl)dd 0), (5.10)

which can also be found identically from (5.4).

The total transformation strain dc*+de** is now called for,
which is also needed for the determination of the local stress
variation in the matrix. From (5.7), one has, with the constants p.
a and b in (3.15)

p.o
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del+_ d 1a + a + 3bXdeC(1)-dec(O))
d1 + d) p11 11

de* +ldel = 1+a (0 + a + 3b)[(d c(1)+d c(1))-d c(O)+d 'c(O))]22 22 2p 1-vo 22 33 22 33

+ 1+a [(d' c(1)-d c(l)..d gc(O) )j
2{(3-4vo)/[4(1-vO)J+a} 22 33 22 33

de+._del= a (0.. + a + 3b)(d'il)+dC())(di.(O)+d.3O)
33 33 2p 1-vo 22 33 22 33

+ 1+a [(d.(l)_dc()).( d -c(O)_d c(0))I2{(3_4vO)/[4(1_,vO)]+a} 3 2 'i 2

d c2+ d 12 -- (d -c(l)-d-,C(Oh1+2a "12 -12'

de13 + d e = (d,(1)d-C(O
13 1+2a 13 13

d +d de 1+a - (dc()dc(O) (5.11)
c23 3= (3-4vo)l[4(1-&.O)]+a 23 23 (.1

The mean-stress variations then follow from (5.9) and (5.10) for
both phases.

To evaluate the corresponding local stress variation in the
matrix with an equivalent transformation strain de*+dc** in the
central fiber, the formula given in Section 4 can be used again,
but now with the following substitutions

d* - d*+de**, c(0)(x) -* de( 0)(x), <e( 0 )(x)> -, <de(O)(x)>. (5.12)

In addition, the heterogeneous creep behavior in the ductile
matrix itself will also result in a further stress redistribution.
This is reminiscent of the heterogeneous creep of a
polycrystalline aggregate among its constitient grains where each
grain is taken to be elastically isotropic but due to the different
crystallographic orientations each will experience its own creep
activity (see Brown, 1970 and Weng, 1981). Within the assumed
framework of elastic constraint the associated stress
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redistribution is most conveniently described by Kroner's (1961)
original self-consistent relation

do(x) = -2MuO(1-foXd c c(O)(x) - <d c c(O)(x)>), (5.13)

where h = (215X4-5vo)/(l-vo).
Thus summing up all the major contributions, the local

stress variation at a field point x can be expressed as

da(O)(x) - da(O) + Lo(de(O)(x) - <d(O)(x)>)

- 2p0 (1-0)Xd e c(O)(x <d e c(O)(x)>), (5.14)

where once again, the first one is given by (5.9), the second by
(5.12) in conjunction with Section 4, and the last by (5.13).

Now that the local-field theory has been established, we
recall that, in retrospect, if the simpler mean-field theory of Zhu
and Weng (1987,89) were to be used, only the first term in (4.11) for
the initial elastic state and also the first one in (5.14) for the

subsequent creep would have been all needed in the calculation.

6. Numerical Results, Comparison with Experiments, and
Assessment of the Elastic Constraint

The local-field theory thus developed is now applied to calculate
the creep behavior of a practical system, for which we choose the
Borsic-fiber/aluminum-matrix composite at room temperature.
The elastic moduli of both phases are (Ericksen, 1973 and Allred
et al, 1974)

Borsic filamentq: E1 = 392.7 GPa, v1 = 0.15
(6.1)

Aluminum matrix: E 0 = 6R9 GPA, vo = 0.33.

The creep properties of both phases have been derived by
simulation of the experimental data of Erickson (1973), as

Borsic filaments: a1 = 18x0
25, n1 = 6.1, b1 = 25

and d1 = 3.7x10"23

Aluminum matrix: a0 = 8x10 "1 3, no = 4, b0 = 8,

and do = 7.7x10 "11 ,
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where stress, creep strain and time are in the units of MPa, m/m,
and hour, in turn. The original test data and the simulated creep
curves with these constants for the aluminum matrix and the
Borsic fibers are shown in Figs. 1 and 2, respectively. The creep
.train of the Borsic filament is seen to be about one order of
magnitude smaller than that of the alumimum matrix, despite its
much higher applied stress (about 15 times higher).

Since the composite is transversely isotropic, five types of
creep curves have been calculated, all under the same external
von Mises effective stress a* = 100 MPa and each at three fiber
-concentration levels c1 = 5%, 10% and 20%. To place the mean
-field approximation in light of the more accurate local-field one,
both types of results are plotted as dashed and solid lines,
respectively, in Figs. 3 to 7. Since the stress exponent n is greater
than one, the mean-field approach generally provides a lower
estimate for the overall creep strain. Under the axial tension,
however, the discrepancy between the two, as shown in Fig. 3, is
small and therefore it should serve as a good approximation. This
is attributed to the fact that the stress field in the matrix is rather
uniform under this loading condition. Such is not the case under
a transverse tension, whose results are depicted in Fig. 4. The
percentage error by the mean-field theory, as measured by
(c _c ,c tends to increase with(22(1ocal)- " 22(mean) )/e 2(local) ' tnst nraewt

increasing fiber concentration (from about 10% at cl = 0.05 to 20%
at c1 = 0.2 after 12 hours of creep) Comparing Fig. 4 to Fig. 3, the
transverse creep is seen to be about one order of magnitude
higher than the axial one.

Both the axial shear and the transverse shear creep curves,
shown in Fig. 5 and 6, respectively, suggest the necessity -
especially at a higher c1 - to use the local-field theory. The shear
creep strain of the composite is slightly larger in the transverse
direction, but the difference between the two is not as
pronounced as in the corresponding tensile cases displayed in
Figs. 3 and 4.

The fifth calculation is for the plane-strain biaxial tension,• . " .. .e -C

under the boundary condition a22 = a33 = a and e( = 6 + C =
0. The initial a has been chosen to provide o* = A a, which,
under the plane-strain condition, requires a(0) = a*/(1-2v12)
initially. It must be noted that the subsequent creep will &enerate
del and, to maintain the plane-strain condition, dell = -del must
be applied for each time increment. Thus d' 11 is accompanied by
a se rela tion all - -E de which results in an additional
do"'e and do%"), calculated in the elastic context of (3.11) and (3.12).

* *I
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1 X 10-3M/M

Matrix

=ri 82.68 MPa

00

ci 65.46 MPa

41.34 MPa

00306.0 9.0 12.0

Fig. 1. Creep strains of the Al 1100 matrix at room temperature

ecX 10-4 M/M

Fiber

& 1324.26 MPa

950.82 MPa

0dy t,hr

0.0 3.0 6.0 9.0 12.0

Fig. 2. Creep strains of the Borsic fibers at room temperature
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Local-field theory =100 MPa

-Mean-field theory

-------------- ------ ---------------------------

10%

---------------------------------

20%

0-6 t,hr

0.0 3.0 6.0 9.0 12.0

Fig. 3. Axial tensile creep strains of the composite

- Local-field theory &22 =100 MPa

-------Mean-field theory

-- - ----------------------------

--------------------- 
-------

0- t,hr

0.0 3.0 6.0 9.0 12.0

Fig 4. Transverse tensile creep strains of the composite

,,
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Local-field theory &12 =57.74 MPa

-------Mean-field theory

---- ------ --- -- ------ -- -- -- -- ---- ---------- -
10%

:: : -----------------------

t,hr
0.0 3.0 6.0 9.0 12.0

Fig. 5. Axial shear creep strains of the composite
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Local-field theory &23 = 57.74 MPa

-------Mean-field theory C, 5%

10%

------- -- -------- --- 20%
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0- t,hr

0.0 3.0 60 9.0 iaO
Fig. 6. Transverse shear creep strains of the composite



521

Lo~cal-field theory &*(0) 100 MPa,

10

20

0.0 3.0 6.0 901.Fig. 7. Plane-strain, biaxial tensile strains of the composite
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i0
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Fig 8 Comparison between the theoretical prediction andexperimental data for axial creep Of the Comiposite
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The strain associated by the application of this drll is time-
dependent and should be included in the overall creep strain. The
corresponding biaxial creep curves of the composite are shown in
Fig. 7; they are one order of magnitude lower than the axial
tensile creep and two orders less than the transverse one. In this
case the mean-field approach is seen to be a good approximation
to the local one again.

It is now desirable to see where the theoretical prediction
stands as compared to the experimental data. Although the range
of fiber concentration is now improved over the mean-field one,
the application of the local theory is perhaps still safer in the
lower range of concentration. The lowest fiber concentration
where we have been able to locate the experimental data was c =
32.4%, again from Ericksen (1973), under an axial stress 11 = 483.68
MPa for the same Borsic/aluminum composite. The experimental
data are shown in Fig. 8 as open circles and the theoretical
prediction as a solid line. While the prediction appears to lie
within a tolerable range of accuracy, its somewhat lower estimate
is evident, and is believed to be caused by the assumption of
elastic constraint of the elastic-creeping matrix.

Finally, in order to examine the accuracy of the assumption
of elastic constraint of an elastic-creeping matrix, we note that,
although more rigorous theoretical models involving an elastic
-nonlinear creep matrix do not seem to exist at present, those

involving a linear viscoelastic matrix are available and can be
called for. In this context, Hashin (1965,66) has developed a
correspondence principle between an elastic and a viscoelastic
composite. For the fiber-reinforced solid an explicit formula with
a Maxwell matrix was also provided for the overall axial shear
creep (Hashin, 1966 To compare these two estimates numerically
we used the same elastic moduli given in (6.1), neglected the creep
of the Borsic filament and the primary creep of the aluminum
matrix, and set a0 = 2.24x10 "7, no = 1 for the steady creep of
aluminum. (This a was chosen so that it would provide the same
steady creep rate for aluminum at a = 65.46 MPa - the middle
curve in Fig. 1 - with this new no value4 The results for both
theories (now the mean-field theory and the local one coincide)
are shown in Fig. 9 for the total strain (E 2 + E where Hashin's
results are plotted as solid lines and the present ones as dashed
lines, with both predicting an identical initial response for the
composite. The present theory generally provides a lower creep
strain for the composite; this is an indication that the assumption
of elastic constraint for an elastic-creeping matrix is generally

,t"
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t12, x 10- 4 m/m

C-

- Hashin's (1966) Laplace transform

---------- Present theory -.

-- - -- - ------------
.... cl 5%

-------- 1 0 %
20%

0

&12 = 57.74 MPa

I t,hr
0.0 25.0 50.0 75.0 100.0

Fig. 9. Comparison between the present elastic-constraint

approximation and Hashin's Laplace-transform approach

stronger than what it actually imposes on the inclusion.
However, when the creep strain is small - say in the order of the
elastic strain as shown here - the constraint power is
predominantly elastic (in fact it is exactly elastic at t=0) and it is
then a reasonable approximation. This is even more so when the
fiber (or inclusion) concentration is low, where the creep strain
can be one order of magnitude higher. Our calculations for the
particle -reinforced composite also show a similar trend and,
indeed, even with a three-parameter standard solid, the nature of
the comparison remains essentially unaltered. Another important
factor is the elastic modular ratio of the constituents; when the
modular ratio is not high (say 1 to 6 as in most metal-matrix
composite), the range of creep strain can go as indicated. With an
excessively higher modular ratio (say rigid inclusions or voids)
the range of permissible creep strain will become slightly lower.

In this light, and in view of the fact that the present theory
is capable of accounting for the nonlinear stress-dependence of
the creep rate and both the primary and the secondary creep of
the constituents, the local theory thus developed is believed to be

. '
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a valuable approximation for the estimate of the time-dependent
overall creep strain of a fiber-reinforced metal-matrix composite.
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Abstract

A nonlinear fibre reinforced composite is considered whose local
behaviour is described by a complementary energy function. The composite
is regarded as nonlinearly elastic but subject to geometrically linear strains
and attention is restricted to fields which are independent of the coordinate in
the direction of the generators of the fibres. The overall complementary
energy is defined and a generalization of the Hashin-Shtrikman variational
structure is applied to the resulting problem. The results take the form of
bounds for the complementary energy and results are presented for a random
distribution of linearly elastic fibres embedded in a nonlinear matrix.

1. Introduction

This work is concerned with describing the overall behaviour of a com-
posite comprising a matrix reinforced by a random distribution of long
aligned fibres firmly bonded to the matrix. If the composite were made of
linearly elastic constituents the overall behaviour would also be linearly elas-
tic, characterized by an overall tensor of moduli, and a number of methods
exist for estimating and bounding these moduli. Here, the constituents are
taken to be nonlinear so that the functional form of the overall response is not
known a priori. The approach adopted is to apply a generalization of the
Hashin-Shtrikman variational structure due to Willis (1983), Talbot and Willis
(1985) and Willis (1986).

The local behaviour of each constituent phase is described by a comple-
mentary energy function and the composite is subjected only to infinitesimal
deformations. The approach generates bounds for the "overall complementary
energy function", even though its functional form is unknown, which make
allowance for the two-point statistics of the medium. However, in contrast to
the linear problem it has not so far proved possible to obtain both upper and
lower bounds. In the present work a lower bound only is derived.

The plan of the remainder of this work is as follows. First, general
definitions of overall properties for any composite are given and then

• 
IV
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specialized to a fibre reinforced material. A novel feature of the present
work is the introduction of an auxiliary energy function which describes a
plane problem for a cross section perpendicular to the fibre direction and
allows for a strain in the fibre direction. The nonlinear Hashin-Shtrikman
principle is then applied. In the particular case of a two phase composite
some explicit nonlinear equations are derived and solved when linearly elastic
incompressible fibres are embedded in an incompressible nonlinear matrix.
Finally, some specimen results are presented.

2. Energy Relations

Although a fibre reinforced composite will be considered in the sequel,
the general definitions given initially apply to any inhomogeneous medium.
A medium is considered which occupies a domain Q, with boundary dQ.
The medium is taken to have constitutive equation

ayj = W (eu ; x) , X E'dWi

or symbolically,

a = W'(e; x) , (2.1)

where a is Cauchy stress and W is a convex function of the infinitesimal
strain e. The overall response of the medium is defined, following Hill
(1963, 1972), by reference to a boundary value problem for which the dis-
placement u is prescribed as

Ui = jX1  (2.2)

over dfl. The tensor i is constant and symmetric and it follows that the mean
strain in the medium is exactly . The minimum energy principle gives

WV) = inf- W(i + e'; x) dx (2.3)

for the mean strain energy density where the infimum is taken over strain
fields e' derived from displacement fields u' which vanish on dil.

For the work to follow it is more convenient to use an alternative char-
acterization of IV(e-) given by Willis (1989). If WO(a; x) denotes the com-
plementary energy density at x, then since W is convex
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W*(o; x) = sup [r'e - W(e; x)) (2.4)

It now follows from (2.3) that

1IV f=inf - sup (a(+ e') - W'(; x) dx (2.5)

and, interchanging the operations of supremun and infimum then evaluating
the infimum, it follows that

V7(e-) > sup (aF- a - W*(o; x)) dx. (2.6)

The supremum in (2.6) is taken over fields for which div a = 0, since the
infimum over e' is -o otherwise. This result may be written

I(e-) >sup ("- 1i,(F)} , (2.7)
a

where

1#(-) = inf ja W'(a; x) dx, (2.8)

and the infimum is taken over fields a for which div a = 0 and which have
mean value a. Equality is usually attained in (2.7) and in particular will be
when W(e; x) is a smooth function of e; then iPo = W and it follows that

A complete discussion is given by Toland and Willis (1989) in the context of
nonlinear electrostatics. It will be assumed in the sequel that W° = IV.
although (2.7) provides a lower bound even when equality is not attained.

The remainder of this work is devoted to obtaining bounds for $V*(i)
for a fibre reinforced composite. The medium envisaged comprises a cylinder
with generators parallel to the x3 axis containing a distribution of circular
fibres whose axes are also parallel to the x3 axis. The cross section of the
cylinder perpendicular to the x3 direction will be denoted by A with boundary
A. Units of length are chosen so that A has unit area.

Attention is restricted to fields which are functions of x, and x2 only.
For a cylinder of finite length I in the x3 direction

• + : + - * ".+ -' -- T"
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1I*( ) < inf a- u W*(o; x) dx,

where the infimum is now taken over fields o(xl, x2). However, if I is very
much greater than a typical dimension, a say, in either the x, or x2 direction,
then a will be a function of x, and x2 only except close to the ends and in
the limit 1 -, - the inequality tends to equality. Hence defining

W2() = inf fW*(a; x) dx, (2.9)

where the infimum is taken over such fields, it is reasonable to seek bounds
on

To complete the formulation, first note that a33 is unrestricted by the
requirement div a = 0. In order to evaluate the infimum over O33 let

sO = s= aa= , (2.10)

where greek suffixes take the values 1 and 2 and define

WX(s, e 33) = inf (W*(a) - a33e33) . (2.11)
0'33

Here, and in the sequel, W" and W* depend also on x but for brevity this
dependence is not shown explicitly. Also let

WX(3-, i33) = inf JA (W(a) - a33e33) dx, (2.12)

where the infimum is taken over fields a such that div a = 0 and
Y0 = Yja = a is prescribed but a33 is unrestricted. Then

SX(Y, e33) = inf (inf fA (W*(U) - F73 3e 3 3 ) dX),
a 33

where dF33 is prescribed for the inner infimum. Hence

Wx(!, e33) = inf (W42(f:) - a 33e33)
n33

and it follows that

#2(Y) = sUp (o33e33 + VX(Y, e33)) • (2.13)
*33
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Finally, note that Or33 depends on x, and x2 only and so is unconstrained by
the requirement div a=0. Thus.

*X i3 in ~JA Wx(S, 33) dx. (2.14)

The problem of finding bounds for W2 is now reduced to finding bounds for
Wx" which is an easier problem than working with (2.9) directly. It defines a
two-dimensional problem for stresses (other than (733) in a fibre-reinforced
material subjected to the prescribed axial strain F33.

3. Hashin-Shtrikunan structure

The results of this section are derived from a generalization of the
Hashin-Shtricman- variational principles to nonlinear problems developed by
Willis (1983, 1986), Talbot and Willis (1985) and Willis (1990). The idea is
to introduce a convex comparison function, W0, with dual function WO. Then
for any symmetric second order (ensor q~

(W* - Wo*)(q; x) = sup {o'iq - W (a; x) + W(a; x)). (3.1)

It is convenient to define

V(17; X) =(W* - Wo.)(7; x) . (3.2)

It now follows that

W*(O; X) 2 0.17 + W(O; X) - V(0y; X) (3.3)

for any a, q and hence from (2.12)

Pi(Y, F3) ;- inf J (W17 - a33F33 + W(O~x V(7;X)) dX.

(3.4)

Next, evaluating the infimum over a33 yields

4~ Y, 33) inJA (S'17 + WO"(S, F33-1733) -V( 17;X)) dX,

(3.5)

where W0x is defined via (2.11). The inequality (3.5) provides, using (2.13), a

7. ;
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lower bound for W2 for any choice of j7. It is finite provided the right side
of (3.1) is finite. This is the case so long as W*(a; x) - W*(or; x) tends to
infinity faster than I rl I as I Ial -408.

To make further progres, WO is taken to be quadratic in a and
independent of x. Symbolically

WO or-Moor, (3.6)

where MO is a fourth order 'tensor of compliances '. Its inverse is the, 'tensor
of moduli' L0. The restriction on the growth of W* - WO limits the useful-
ness of the form (3.6) to functions W* which grow at least quadratically with
a when flIarl Iis large. However, this will be the case for the examples
treated later.

In order to calculate WO' explicitly it is necessary to have knowledge of
the tensor L,0. To be definite, LO is now taken to be isotropic, with bulk and
shear moduli KO, #0 respectively; in the notation of Hill (1965)

LO (3K0, 2juO) .(3.7)

I t th e n fo llo w s th a tI1( 

3 8

and a little algebra shows tha

WA~S, e33) - 1 {(a - I b) s,2 + 2hs~,. s,, + 4bs~,

-d s., e33 - c e3,(3.9)

where

1 [5po3Ko 1+A b 4,u 3K 0  d 3K 0 2+p0u

(3.10)

With t further definitions

W*M(S) I . {a - 1ib) sm2 + 2bsO, ,(.1
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f i., 7 = - 8, d(i 33 - 733) (3.12)

it follows from (3.5) that

WX( e*3) ~~A W( 2 (S)+2bS,2-V(J7; X)-LC( 3 3_17 33)dx

(3.13)

The infimumn is attained when

dWceM(S)

e = 2bSO + )L(3.14)

is compatible with a displacement field u satisfying a boundary condition of
the form (2.2) on dA for some F Rewriting (3.14) as

e = MOS + 7

so that

s = g(e - q*) (3.15)

which definie MO* and a, the problem now is to find u satisfying (2.2) on dA
such that sand eare related through (3.15) and div s=O. The value of iin
(2.2) is then chosen so that s has mean value 31 Thus it is necessary to solve

div [a(e - 7)J= 0 x eA ,(3.16)

subject to the boundary condition (2.2). This uncouples into equations for the
plan and antiplane, components. A formal solution is

e = e- T(4~) ,(3.17)

where r is a linear operator whose kernel contains two derivatives of dhe
Green fution for tho plane or antiplane problem as appropriate. Calculating
s through (3.15) and choosing F appropriately gives
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where the linear Operator A is defined by

At/"* = Lj7,* - #*) - L rL " (3.19)
An elementary property of r is that

and it follows that

AMA = A ,( 3(320)

see, for example, Willis (1981). It follows now on substituting (3.18) in(3.13) and using (3.20) that

N(C, F33 ) f (I.A - - '.Aq'-V(q; x) -'C(e3
3 -F 33 )2 ) dX

+ W )(-) + 2bR3 . (3.21)

4. Application to composites

No immediate advantage is obtained by specializing to a fibre-reinforced composite. Instead the body is taken to be a mixture of n firmlybonded phases. The complementary energy function of the rth phase is writ-ten W* so tha

7 ; ia--Z W(c)f,(x) 
(4.1)

where f,(x) has value I if x lies in phase r and has value zero otherwise. It
follows from (3.2) that

V(1; x) E V,( 7) f(x) (4.2)

where

v,( = (w " WO w ) ) (4.3)

4 -41
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The right side of (3.21) provides a bound for any ;7; the procedure now is to
choose

q( ) = : 1, M(x) ,(4.4)

where the %., are constants, substitute into (3.21) and (2.13) and then maxim-
ise the right side with respect to the variables q, to produce a bound for W2*.

Substituting (4.4) into (3.21) gives

Wx(, W33) > 7 c, 41, - V,070 - Lc(e33 - (1,)33 )2

2 1 E,*;.B,7; + W 2)(- ) + 2bs2 . (4.5)2

where c, is the volume fraction of phase r, given by

c, f,(x) dx (4.6)

the tensors B,, are given by

B,, -- ,(Af,) dL (4.7)

and Y1, is found from ;1, using (3.12).
For the particular case of a two phase composite (n= 2), f, + f2.

and

B. , (Jr, - c,)Q (no summation on r) (4.8)

where

C i C2 Q fL (Af)dx . (4.9)

Using this in (4.5) and then substituting into (2.13) now gives

WIP;() a sup N, + C, J-Y

- - + W (s) + 2bY3, (4.10)
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wher f= Ec^ 7and Yj= d. The right hand side is maximized with

respect to the variables il, when they satisfy

qj+ (Q(17 - q))o = 1qi (4.11)

33- CF3- q133) + d! [Q(17* - 2 ~ , (.2

where is either ;j or ;2 and C,. is a subgradient of V, at q7,:

;' dV7 (17) . (4.13)

Finally the supremurm over F3 is attained when

C(F33 - 1733) 163 -1 d (4.14)

and adding this to (4.12) gives

;33 + C01733 - i733) + -~ ~~ 7] =C 3 . (4.15)

S. Example: an array of incompressible fibres in an incompressible
matrix

The remainder of this work is devoted to considering an array of
incompressible fibres which exhibit linear behaviour embedded, with
tranversely isotropic symmetry, in an incompressible nonlinear matrix.
Specifically the matrix (phase 1) is taken to be characterized by a comple-
mentary energy density

W*(a) = F(t) &i (5.1)

where dhe equivalent strws a, =(o,'I2iis defined in terms of the devi-
atorc straw = cy- 8# a. and the mean stress ., = c.j3. The function
FQt) is take to be convex. The fibres (phase 2) are taken to have energy
density

W2() 2 (5.2)

~~6p2
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The comparison medium is taken to have the corresponding form with

modulus iso:

Wo*(O, 0,.2(5.3)

It follows by taking the incompressible limit of results given by Walpole
(1969) that

(Q7)#= Yo* -1 ;4

(Q*M Q*3 07.3 -(5.4)

Also, in this limit, a=-sOI8 c c=3#0  d d= Iland the polarizations q~
satisfy qjt = 0. With the further definition

it follows that (4.11) and (4.15) can be written

C+ #00,"V - 1-7,") = a*(5.6)

C33 + 3juO( 33 - q733) =033 ,(5.7)

where Yj has been replaced by dq. From (5.6)4 Cyy dF, so it follows that

*43 + 2uo(q73 -1733) a 033 ,(5.9)

--. where4"and q' are defined lkea' and" is defiedlike q".

Now

anprovided F is smooth enough and Wj - WO* is convex,

147
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gSo

where

If W,' - WO is not convex, (5.11) still holds while 4j ipo is, in general, a
subgradient of (W'* - Wo*'*(;). The solution to (5.8), (5.9) now follows by
eliminating ;2, 112 and then i~l from the equations to give

A2  11(513

=0 (;L1 + C247) " (.13

and

;L4
(; ; (A3 + 2C2q,) a*33  (5.14)

where the constants A, , -.- A4 are

A1 =1I+ C1 go [1

A2=1+ [ (2'2 2po]

A3 = 1 + 2pUo cl

A4 = MUO'I2 (5.15)

An equation for then follows as

(2 2 r2+ 3 4 (516

3 (l+ C24) 2 r+2 (A4 + 2C2V)2a3 (.6

where

T2 60 a + 2.3 r.3(5.17)
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The solution to (5.16) for ,,_determines (;1);3 from (5.13), (5.14), )7;
from (5.11) and, noting that FY from (5.6), (5.7), ;2 can be found and '72

follows from (5.10).
Finally., ;,E d(W, - W(, 1 7 ) and hence 17, 1E d(W, - W..;)

It now follows that

V, )= ;-7 - (W; - W*)**(C,) (5.18)

and some algebra shows that (4.10) becomes

W;a :2 C, [±iq(17A)i - -1(;Aj(7Aj + (Vi - o)*;

3 -2
WO 2# + 8aGa + O~ 3  (5.19)

In deriving (5.18), use has been made of (4.14), (5.8) and (5.9).
The right side of (5.19) provides a non-trivial bound for any juo tju

and the best bound is found by optimizing over MuO with this restriction. A
procedure previously adopted by Ponte Castateda, and Willis (1988), Willis
(1989) and Willis and Talbot (1989) would restrict juO to values for which

W - W*= (W, - Wo*)* at the C, of interest. This would certainly produce
a bound but it need not be optimal. See Willis (1990) for further discussion.

6. Results

Before proceeding, it is convenient to write the bound in (5.19) as a
function of ;1 only. Upon using the relations (5.10), (5.11), (5.13), (5.14)
and eliminating ;2 using ~=dthe right side of (5.19) becomes, after some
algebra,

=N' C, (Wi WO

+r L2 lf 2 3 2

+ LC1 C2  +~ 9)2 J2 ( 1 +c 2 ) 2 ( 3 +2 2 )2 J

00[J22I A +C4 A c
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++-L32 + 2 
.(6.1)

The particular form of F for which results are presented is

F(t)= eo{L4  [[t ao] l(t - a)I (6.2)

Then, writing 3 A, o1c, two cases need to be considered: frstly JU < #2
and secondly ul > /L2. In the first came the fibres amestiffer than the matrix
and Wj' - WO* and W2 - W;are convex for juO a ju2. The bound (6.1) is
optimized by choosing #UO = #U2 , 9 has the form (5.12),

W - W;= (W' - Wo*)* and the bound follows by solving (5.16) and sub-
stituting the result in (6.1).

In the second case, the matrix is stiffer than the fibres for low levels of
applied stress and although W2 - Wj* is convex for #0 ! j2 Wj* - O

need not be. If a, denotes the value of a. for which Wj - W* is minimized,
that is a, is the solution to

( = F(a ) ,(6.3)

3go

with the constraint a, a ay, it is easy to show that

a2
(wo - W)OO(a) 6#

F(i di Cs a.

00 F(C) - C (6.5)

For low levels of' applied stress it is convenient to treat a, and AO as the
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primary variables; for then, < a , 4 = 0 and it can be shown that

a 2 [2;2 - L1 2 L 2]

0 6l 2-.Z 1  2 1 3 3

(6.6)

The best bound is obtained when

dWZ
= 0 , (6.7)

with the constraint po Z 02 and o given by the solution to (6.3) with the
constraint a, ay. The strategy is to solve this problem for #uo and or,
ignoring the constraint /Mo a 02. If the value of Mo so obtained is greater
than P2 the bound is given by (6.6). At a certain level of applied stress
/Uo = J 2 is obtained corresponding to the least value of d for which
W' - W = (Wl" - W*)*" and the problem then reverts to solving (5.16)
with o given by (5.12) and Mo = 42, and substituting the result into (6.1).

A computer program has been written to evaluate (6.1) and sample
results are presented for

y/Ia 0 = 0.2 and c2 = 0.3

Fig. 1 shows the lower bound W(&)I(eoao) plotted against /aro for
33/qO' = 0.1 and j'/y2 = 2. The dotted curve corresponds to m = 3 while

the solid curve corresponds to m = 10. The bound W is a function of d
through r, u33 and is a lower bound for 1*(4Y). Although it does not follow
that RW ld # is a bound for ii, Fig. 2 nevertheless shows plots of r/ao

against (eo; this provides approximations for the mean strain com-

ponents F, ,Fa . Some checks have been made and the slope of the
straight portion of the curves at low values of r/oro agrees with the Hashin-
Shtrikman upper bound for the shear modulus of a composite comprising
linearly elastic fibres with modulus P2 embedded in a linearly elastic matrix
with modulus 02. Fig. 3 shows plots of WL(j)/(eoao) against i1oo for
8;3u?0 = 0.1 and ,t/, 2 = 0.5. No new features emerge and the comments
above about the behaviour of the bound as '/cro -4 0 still obtain.

4t
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0.0 0 .2 0.4 0.6 0.8 1.0 1.2 1.4

Fig.I The lower bound Wj(J)I(eOqO versus rlao, for
-0 0. 1, UI/92 2 and m =3 (dotted curve), m =10 (solid

curve).

(a

0 2 4 6 8 10 12

Fig.2 Plots of ?1ao against (dW~Idrj/e0 . for the same parameter values as in Fig.

Sn
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0.0 0.2 0.4 0.6 0.8 1.0 1.2 IA

Fig.4 The lower bound WL'()I(e~a0) versus a-I3ao, for
iiVrO 0. 1, 1 102 2 and m 3 (dotted curve), m 10(solid curve).

C;

C

0 1 2 3 45

Pig.5 Plots of C-r3Iao against (dWZ~ld- )eo for the same parameter values as in

Fig. 4.

Figs. 4 and 5 show plots of W,f)I(eoao) against a-Io31o and -'la

againSt -'- 1e0 for #rr 01ad //JI 2 = 2. The behaviour of he

bounds at low values of a3e1a now agrees with the Voigt bound for the
Shear modulus of a linear composite. The behaviour of the bounds in Figs. 1,
3 and 4 for high levels of applied Stress is also of interest. In this case
.4o = M2 , (5.16) becomes

2421 2 + , i (.8

and (6.1) is
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1.2 C [I" ' 0,
WL(Y)(eoao) 0 0_ _ Co [T m

2 #2 JIcJ m+l ad J ~

3 # 1 + c l)2 + [ a ; 1 2 1( .9
02 4~ JC8 C2  L~J

These show that for '/o0 > 1 or 033/O : 1 the bound is approximately a
quadratic function. This is borne out by the shape of the curves in Figs. 2
and 5. This form for the bound agrees with intuition for axial loading (Fig.
4) but clearly underestimates the energy with the loading in Figs. 1 and 3. In
this latter case T can be interpreted as an applied shear and it is expected that
once the matrix has yielded it will continue to flow and that the overall
energy should obey some sort of power law. The inability of the results
presented here to model this behaviour probably reflects the lack of sensi-
tivity of the correlation functions to which phase constitutes the matrix and
which the fibres. This lower bound would model more accurately a linearly
elastic matrix containing nonlinear fibres.
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Abstract

The accumulation of matrix cracking is examined using continuum damage
mechanics lamination theory. A phenomenologically based damage evo-
lutionary relationship is proposed for matrix cracking in continuous fiber
reinforced laminated composites. The use of material dependent properties
and damage dependent laminate averaged ply stresses in this evolutionary
relationship permits its application independently of the laminate stacking
sequence. Several load histories are applied tocrossply laminates using this
model and the results are compared to published experimental data. The
stress redistribution among the plies during the accumulation of matrix
damage is also examined. It is concluded that characteristics of the stress
redistribution process could assist in the analysis of the progressive failure
process in laminated composites.

Introduction

A unique property of composite materials is their evolutionary failure char-
acteristic. The inhomogeneity of the microstructure provides numerous
paths in which loads can be redistributed around the damaged region.
Thus, the integrity and response of the component are affected more by
the collective effects of the accumulated subcritical damage than by any
single damage event. For laminated composites, this subcritical damage
takes the form of matrix cracks, delaminations, debonding, and fiber frac-
tures. Because the transfer of load away from the damaged area influences
the damage evolution in the adjacent areas, the stresses at the ply level play
an important role in the evolution of damage and the ultimate failure of
the structure. Thus, this unique failure process that makes composites an
attractive engineering material has also limited their efficient use in struc-
tures. The primary reason has been the shortage of analytical means to

I7f,



550

model the complex events occurring within the laminate and the prediction
of damage evolution.

A review of the current literature indicates that three approaches have
been taken to solve this problem. The first approach is the phenomeno-
logical methodology. Empirical relationships are developed from a body of
experimentally measured data. Statistical theory is frequently employed to
correlate this data. Models of this type tend to be restricted to the stacking
sequence utilized to construct them. The second approach, called the crack
propagation method, identifies damage as dominant cracks and fracture
mechanics is applied to predict crack growth. The physical significance of
each damage mode is retained with this approach. Unfortunately, the dam-
age state in composite materials contains a multitude of interacting defects.
Analysis in this manner is complex and perhaps unmanageable. For exam-
ple, if there are hundreds of cracks, then the finite element method would
require tens of thousands of elements. The third and most recent approach
is the use of internal state variables in a continuum damage mechanics
framework to model the damage accumulation. The averaged effects of the
damage are represented through the internal state variables. This theory
provides a thermodynamically rigorous characterization of the continuum
under examination. The continuum damage mechanics approach entails
the formulation of constitutive relationships, damage variable descriptions,
and the damage evolution laws. The damage evolution laws may either be
phenomenological, mechanistic, or even some combination of both. Because
this approach is capable of accounting for the stacking sequence, it differs
considerably from the phenomenological approach. Furthermore, because
the effects of each crack are treated in the constitutive equations rather
than via fracture mechanics, the computational solution is simpler than
the crack propagation approach.

In the current paper, the continuum damage mechanics lamination the-
ory proposed by Allen, et al. (1987a,b) is reviewed. Also a matrix crack
damage evolutionary law is developed and this phenomenologically based
evolutionary relationship is used to examine the accumulation of damage
and the accompanying stress redistribution among the plies in laminates
subjected to fatigue loading conditions.

Review of the Damage Dependent Lamination Model

The continuum damage mechanics approach used herein is based on the
thermodynamics of irreversible processes. It is postulated that the state of
a material point in a system undergoing a dissipative process can be char-
acterised by a set of observable and internal state variables if this process is
sufficiently close to the equilibrium state. Through the application of con-
straints from the fundamental principles of thermodynamics as proposed by
Coleman and Misel (1966) and the assumption of interdependence among

.... these state variables, Coleman and Gurtin (1967) showed that constitutive
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equations for the material can be constructed in terms of the strain tensor,
temperature, and internal state variables. The internal state variables may
represent any dissipative process occurring in the medium. For the current
application to distributed matrix cracks in laminated polymeric compos-
ites, Allen, et al. (1987a) selected a second order tensor value internal state
variable to represent the kinematics of the cracks. This tensor was first
defined by Vakulenko and Kachanov (1971) to be

aij = uinjdS, (1)

where aij are the components of the internal state variable tensor, VL is
a local volume in which statistical homogeneity can be assumed, u, and
n. are the crack face displacement and normals, respectively, and S is the
crack surface area.

The thermomechanical response of an elastic material with damage was
found to be related to the damage dependent Helmholtz free energy as
follows,

ahL(2aL~j -a L~j(2)

where rLij are the components of the locally averaged stress tensor, hL is
the volume averaged Helmholtz free energy and CLij are components of the
infinitesimal locally averaged strain tensor. The subscript L will be used
herein to denote volume averaged quantities. The Helmholtz free energy,
hL, for an elastic material with distributed damage is defined by

hL = hEL + U1,, (3)

where hEL is the Helmholtz free energy of an equivalent undamaged elastic
body and uc is the energy associated with the damage effect on the ma-
terial. These two energy quantities are expressed by second order Taylor
series expan-ions of the corresponding ,ate variables. If the higher ordered
and residual effects are neglected and isothermal conditions are assumed,
The ply level thermomechanical constitutive relationship of the damaged
material is,

ij -CLijklkl + hijklC4k. (4)

where CLiJh is the undamaged material modulus tensor and ILjki is de-
noted the damage modulus tensor. The components of this damage modu-
lus tensor were shown by Allen, et al. (1987b) to be related to the modulus
tensor as follows

ILijki 2Z -CLijAhI. (5)

Another result of the Coleman-Misel formulation is the entropy production
by the distributed damage in the absence of thermal gradients,

f T>. > 0(
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where the thermodynamic force, fT, associated with the evolution of aj is
denoted by OT h

j= - 8h.(7~(7)

Inequality (6) will admit only those processes that yield non-negative rates
of entropy production.

The response of a multilayered laminate with matrix damage is obtained
by inplane averaging the ply level constitutive relationship show in equa-
tion (4) and imposing the Kirchhoff hypothesis through the thickness to
obtain the following modified set of laminate equations,

n 
1 n

{N}= [Q] k(zk -Z-){co} - E[Q]( - z1)

n- k= l (8)

E [Qk(Zk - z,1){a'1,

where {N} is the resultant force per unit length vector, [Q]k is the elastic
modulus matrix for the kth ply in laminate coordinates, zk is the distance
from the midplane to the kth ply, c* and r. are the midplane strains and
curvatures, respectively; and {aM} are the damage variables corresponding
to the matrix cracks in the k4 ply. The effects of the matrix cracking on the
resultant forces are contained in the last group of terms on the right hand
side of equation (8). An expression for the resultant moments can be written
in a similar form. The stiffness loss of composite crossply laminates with
matrix cracks has been successfully predicted with this model by Allen,
et al. (1987b, 1988) for specified damage states using equation (8). In
addition, although it will not be discussed in this paper, the model has also
been extended to include the effects of delaminatioL by Harris, et al. (1987,
1988). A damage evolution relationship for this model will be introduced
in the following section.

Evolutionary Equation for Internal State Variables

In order to characterize the development of the internal damage, the con-
ditions for the initiation and progression of damage as well as a means to
quantify changes in the damage state must be established. Concepts from
linear elastic fracture mechanics can often be employed to assist in the
development of the evolutionary equations for brittle damage. The ther-
modynamic force, fT, as defined by equation (7), represents the available
free energy that can be delivered by the system for a small change in the
internal state variable. However, this change will occur only if the energy
delivered is equal to or greater than the energy required to produce this
change in the internal state. Thus, the following initiation criterion based
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on the relative magnitudes of the available and required thermodynamic
forces, (f12) can be used for this model,23 eq.

J-(/,,)e.. (9)
The implementation of this criterion will require the determination of the
required thermodynamic forces. The required thermodynamic forces are
most likely to change with the damage state. This criterion is analogous
to comparing the strain energy release rate to the critical value in fracture
mechanics. Had the internal state variable been defined as the crack sur-
face area, the thermodynamic force would be identical to the strain energy
release rate.

One approach to the formulation of the internal state variable evolution-
ary relationships is through micromechanical considerations. However, this
approach is dependent on the availability of micromechanical solutions that
can model the essential physical characteristics of the damage state. For
the problem of matrix cracks embedded in an orthotropic medium that is
layered between two other orthotropic media, the solutions that are cur-
rently available are applicable only to very specific loading conditions and
damage geometries. Therefore, the evolutionary equation proposed herein
is phenomenological in nature. The form of the damage evolutionary rela-
tionship employed in this paper is based on the observation made by Wang,
et al. (1984) that for some materials the rate of damage surface evolution
per load step, S, follows the power l,w as shown below, in which thedN
strain energy release rate, G, and a material parameter, n, serves as the
basis and exponent, respectively.

dS= PG0n (10)
dN

where P is a material constant. To develop internal state variable evolu-
tionary equations in the form of equation (10), aij has to be related to
the damage surface area. Since ctj, as defined by equation (1), represents
the kinematics of the crack faces, the damage surface area alone will not
be sufficient to describe the crack face displacements. Assuming that each
crack in the material volume shares a common geometry and orientation,
then the specification of the far field strains will complete this description.

The rate of change of the internal state variable can therefore be expressed
as follows,

dtij daij dS

dN dS dN

where the far field strains are reflected in the term -, which relates the
changes in the internal state variable during the development of damage

- surfaces. Thus, using equations (10) and (11), the stable evolution of the
internal state variable is defined by

do,, = d-, k, GdN (12)

4.- -
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where * can be determined analytically for simplified damage geometries
and loading conditions and k, is a material parameter.

It will now be shown that the strain energy release rate can be determined
from the thermodynamic forces. The Helmholtz free energy for a body with
distributed damage was defined earlier to be the sum of the Helmholtz free
energy in an equivalent undamage body, hEL, and the energy of damage
creation, u'. Since hEL is independent of the internal state variables, the
thermodynamic force can be expressed in terms of uc as

f L (13)

Allen, et al. (1987a) defined uc as the mechanical energy of a continuum
due to equivalent crack surface tractions acting on the crack faces. This
energy encompasses the energy available for crack extension and the energy
loss due to the apparent stiffness reduction caused by existing cracks. An
association between the energy for crack extension and the strain energy
release rate, G, is defined by

1 fS GdS. (14)UL = VW (14

The strain energy release rate is obtained from equation (14) by differenti-
ation with respect to the crack surface area. Thus,

G=VL du (15)
dS

If the process is restricted to isothermal conditions, uc depends only on the
strain tensor, csj, and the internal state variable, aij, so that equation (15)
becomes

G=Vuk L±, L u daij (16)Gc = -C. d + VL '-9dSc

,9eij dS 49aij dS'
The relationship between the strain energy release rate and the available
thermodynamic force is obtained by permitting crack extension under fixed
grip conditions and using the definition of the thermodynamic force in
equation (13),

dS - (17)

The internal state variable evolutionary equation shown in (12) can thus
be expressed in terms of the available thermodynamic force as follows:

dcti k[ d= -nfl]' dN when fa. > (T)q . (18)

For crack propagation under a single fracture mode, the crack surface kine-
matics for a thin laminate can be characterized by a single component of

-! ,
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the internal state variable tensor. For example, consider the matrix crack
damage state shown in Fig. 1, where all the crack planes are flat and ori-
ented perpendicular to the plane formed by the lamina and parallel to the
fibers, a pure opening mode (mode I) would correspond to the crack faces
moving in a direction parallel to the crack face normals. Thus, in reference
to the ply level cartesian coordinate system, the internal state variable ten-
sor as defined by equation (1) will be zero except for Q22. Likewise, for the
pure shearing mode (mode 11), the only non-zero component of the internal
state variable tensor would be a 12.

Matrix Crack Development in Multi-Ply Laminates

The evolutionary relationship shown in equation (18) provides a description
of the damage development at the ply level. In laminates containing multi-
ple plies of different orientation, the development of damage is influenced by
the adjacent plies. This is attributed to the different stress states found in
the neighboring plies and the redistribution of load among the plies that oc-
curs during the accumulation of damage. The effects of this interaction on
the damage development are included implicitly in the evolutionary equa-
tion through the thermodynamic forces and dS because laminate averaged
damage dependent ply responses calculated from equation (8) are used to
determine these quantities. Since the adjacent ply constraining effects are
reflected through the laminate equations, the evolutionary equation can be
applied independent of the laminate stacking sequence.

Load

ii ~-~*-Load

Fiber
X1 Direction

.* Figure 1. Idealized configuration of ply with matrix cracking.
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The term dcx, found in equation (18), reflects the changes to the inter-
nal state variable with respect to changes to the damage surfaces. L can
be obtained analytically from relationships describing the kinematics of the
crack surfaces for given damage states and loading conditions, should such
solutions exist. For transverse matrix cracks in crossply laminates, the aver-
age crack face displacement in the pure opening mode can be approximated
by a solution obtained by Lee, et al. (1989) for a medium containing an in-
finite number of alternating 00 and 900 plies. Thus d72 2 can be determined
for crossply laminates subjected to uniaxial loading conditions. It has been
found that for typical continuous fiber reinforced Graphite/Epoxy systems

can be assumed to be constant for a given applied load until the dam-d$

age state has reached an advanced stage of development. This assumption
has facilitated the determination of the material parameters k, and n. The
damage state at any point in the loading history can now be determined by
the integration of equation (18) using the laminate averaged ply responses.
This integration is performed numerically because of the nonlinearity of the
damage evolutionary equation. The fourth order Runge-Kutta method has
been found to be suitable for this application.

The development of the matrix crack damage state in crossply laminates
subjected to uniaxial fatigue loading is examined using the proposed dam-
age evolution equation. To maintain the thermodynamic admissibility of
the fatigue loading process, it is assumed that the values of the internal
state variables remain constant during the unloading portion of the load
cycle. It was further assumed that the required thermodynamic force is very
small compared to the available thermodynamic force, thus Ct22 will change
at the onset of load application. The material properties for AS4/3501-
6 Graphite/Epoxy are used in the calculations to enable the comparison
of model prediction to experimental measurements made by Chou, et al.
(1982). The material parameters for this polymeric composite system have
been found to be

kl = 4.42 and n = 6.39 (19)

The damage histories for two crossply layups have been predicted using the
model. One layup consists of four consecutive 900 plies laminated between
0* layers of two ply thickness. The other crossply laminate contains six con-
secutive 900 plies in the center. The model predictions of the damage state
in the [02/902], laminates fatigue loaded at a maximum stress amplitude of
38 ksi and 43 ksi are shown in Figs. 2 and 3, respectively. The lower stress
amplitude is equivalent to eighty percent of the monotonic crack initiation
stress, while the higher stress amplitr de is equal to ninety percent of the ini-
tiation stress. The experimentally measured damage states were originally
measured in terms of the crack density. However, the corresponding at 22
for each damage level can be approximated by the relationship proposed
by Lee, et al. (1989).
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Figure 2. Matrix crack damage in the 90' plies of a [02/902], AS4/3501-6
laminate loaded at a stress amplitude of 38ksi
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Figure 3. Matrix crack damage in the 900 plies of a [02 9021, AS4/3501-6
laminate loaded at a stress amplitude of 43ksi
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Good agreement is found between the model predictions and the experi-
mental results. The damage evolution for the thicker [02/9031, laminate is
shown in Fig. 4. This laminate was loaded at a maximum stress amplitude
of 26 ksi. This amplitude corresponds to eighty percent of the quasi-static
matrix crack initiation stress. The results for this load case indicated good
agreement with the experimental data. The effect of the load redistribution
on the damage evolution is apparent in this load case. A marked decrease
in the rate of damage evolution after fifty thousand load cycles was indi-
cated by the model. On the other hand, the experimental data showed this
decrease to occur after only ten thousand load cycles. Since the evolution of
delaminations were not included in the analysis, the predicted decrease in
the rate of damage evolution is attributed only to the matrix crack induced
transfer of load from the 900 plies to the adjacent 0' plies and the resulting
decrease in the available thermodynamic force. The measured values of
the damage state, however, may have been influenced by the formation of
delaminations along the free edges and in the interior. Such occurrence can
drastically affect the stress distribution among the plies and the available
thermodynamic force for damage evolution.

To examine the amount of stress redistribution that occurs during the
damage accumulation, the model was used to determine the axial stress in
the 900 plies of the [02/903], laminate fatigue loaded at three different stress
amplitudes. Fig. 5 shows that for the stress amplitude of 38 ksi, the axial
stress in the 90' plies after forty thousand cycles was less than fifty per-
cent of the original stress level in the undamaged laminate. Therefore, the
rate of damage evolution is expected to be relatively low during the latter
stages of the loading history. This is observed in Fig. 6, which shows the
corresponding values of the internal state variable, a 22 , for the three load
cases. The 26 ksi stress amplitude load case, on the other hand, produced
only gradual changes in the axial stress and damage state as compared to
the other two stress amplitudes. The percentage decrease from the original
undamage stress level increased with the fatigue stress amplitude. These
results demonstrate that the stress redistribution characteristics among the
plies in the laminate are dependent on the loading conditions. These redis-
tribution characteristics will affect the manner in which damage develops
in the surrounding plies as well as eventual failure of the laminate.

Conclusion

A damage evolutionary relationship for the accumulation of matrix cracks
has been presented. This phenomenologically based relationship operates
as part of a continuum damage mechanics model developed to analyze the
response of laminated composites. The utilization of material dependent
quantities and damage dependent laminate averaged ply responses in the
evolutionary relationship has enable it to function independent of the lam-
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Figure 6. The accumulation of damage in the 90 ° plies of [02/903]Slamin

-ates subjected to constant stress amplitude fatigue loading.

inate stacking sequence. The capability to predict the evolution of matrix
cracks in crossply laminates subjected to fatigue loading conditions has
been demonstrated. The evolutionary relationship has also been used to
examined stress redistribution among the plies during the damage history of
the laminate. It is found that the stress distribution behavior is dependent
on the load amplitude. Higher applied loads result in rapid changes in
the axial stress and damage state during the initial portion of the loading
history. This is then followed by low rates of change for the remainder of
the loading history. For lower load amplitudes, the stress redistribution
process and damage accumulation proceed in a gradual manner.

The existence of other types of damage, such as delaminations, will alter
the redistribution of stress among the plies and thus the evolution of the
damage state. An evolutionary relationship for delamination is currently
under development. The inclusion of this type of damage should provide
better insight into the complex events occurring within the laminate. The
information obtained from the stress redistribution histories could enhance
the knowledge of failure characteristics in laminated composites and aid in
the development of models for this progressive failure process.



561

Acknowledgments

This research was supported by NASA Langley Research Center under
contract no. NAG-1-979 and NGT-50262.

References
Allen,D.H., Harris,C.E., and Groves,S.E., 1987a, "A Thermomechanical Con-

stitutive Theory for Elastic Composites With Distributed Damage-I. Theoretical
Development," Int. Journal of Solids and Structures, Vol. 23, pp. 1301-1318.

Allen,D.H., Harris,C.E., and Groves,S.E., 1987a, "A Thermomechanical Con-
stitutive Theory for Elastic Composites With Distributed Damage-IL. Applica-
tion to Matrix Cracking in Laminated Composites," Int. Journal of Solids and
Structures, Vol. 23, pp. 1319-1338.

Allen,D.H., Harris,C.E., Groves,S.E., and Norvell,R.G., 1988, "Characteristics
of Stiffness Loss in Crossply Laminates With Curved Matrix Cracks," Journal of
Composite Materials, Vol. 22, pp. 71-80.

Chou,P.C., Wang,A.S.D., and Mill er,H., 1982, "Cumulative Damage Model for
Advanced Composite Materials, AFWAL-TR-82-4083".

Coleman,B.D., and Mizel,V.J., 1966, "Thermodynamics and Departures from
Fourier's Law of Heat Conduction," Arch. Rational Mech. Analysis, 23, pp.
245-261.

Coleman,B.D., and Gurtin,M.E., 1967, "Thermodynamics With Internal State
Variables," The Journal of Chemical Physic, Vol. 47, pp. 597-613.

Harris,C.E., Allen,D.H., and Nottorf,E.W., 1987, "Damage-Induced Changes
in the Poisson's Ratio of Cross-Ply Laminates: An Application of a Continuum
Damage Mechanics Model for Laminated Composites," Damage Mechanics in
Composites, ASME, AD-Vol. 12, pp. 17-23.

HarrisC.E., and Allen,D.H., 1988, "A Continuum Damage Model of Fatigue-
Induced Damage in Laminated Composites," SAMPE Journal, Vol. 24, No. 4
pp. 43-51.

Lee,J.W., Allen, D.H., and Harris,C.E., 1989, "Internal State Variable Ap-
proach for Predicting Stiffness Reductions in Fibrous Laminated Composites
With Matrix Cracks," Journal of Composite Materials, Vol. 23 'pp. 1273-1291.

Vakulenko,A.A., and Kachanov,M.L., 1971, "Continuum Theory of Cracked
Media," Mekh. Tverdogo Tela, 6, p.159.

Wang,A.S.D., ChouP.C., and Lei,S.C., 1984, "A Stochastic Model for the
Growth of Matrix Cracks in Composite Laminates," Journal of Composite Ma-
terials, Vol. 18, pp.239-254.



Lower and Upper Bound Estimates for the
Macroscopic Strength Criterion of Fiber
Composite Materials

PATRICK DE BUHAN*, JEAN SALENCON*, ALBERTO TALIERCIO**

* Laboratoire de M~canique des Solides, Ecole Polytechnique
91128 Palaiseau Cedex, France

** Dipartimento di Ingegneria Strutturale, Politecnico di Milano
20133 Milano, Italy

Aber act: The formulation of a hamogenization procedure within the frame-
work of the yield design theory makes it possible to derive a strength

criterion for a fiber composite material in a rigorous way, from the
only definitions of the strength properties of the constituents (matrix
and fibers) and of their geometrical, structural and voluminal arrangement.
Making use of both yield design static and kinenatic approaches, quite
simple analytical lower and upper bound estimates are obtained for a
unidirectional fiber composite. A detailed analysis of those estimates
is carried through in the specific case when the canposite is subjected
to a uniaxial solicitation or to plane strain conditions parallel to

the fibers direction

1. In'toduation

Among the various theoretical investigations being carried out
for analysing the inelastic behaviour of fiber omxposite materials, same
are more specifically concerned with the determination of their ultimate

strength oroperties. They are generally based on a "micro-macro" approach
which aims at relating the overall behaviour of the composite to the
strength properties of its constituents taking into account their struc-
tural arrangement (e.g. respective voluminal proportions, geometry of
the fibers etc.) (Saurindranath and Mc Laughlin, 1975 ; Sawicki, 1981
Dvorak and Bahei-el-Din, 1982). When the fibers are laid out throughout
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the matrix material following a regular pattern, a homogenization method
formulated within the yield design theory- (de Buhan and Salengon, 1967)
provides a rigorous mechanical framework for solving such a problem.

This paper is devoted to the application of that method to a
unidirectional fiber ccosite material. The general static and kinematic
definitions of the corresponding macroscopic strength criterion are given,
and lower and upper bounds are derived fran the implementation of the
yield design static and kinematic approaches respectively. These bounds
can be expressed by means of explicit analytical formulae in case of
simple solicitations such as uniaxial or plane strain loading conditions.
Their major interest lies in providing easily usable estimates for the
overall strength of the cxrposite, which remain valid for any volurninal
proportion of the fibers.

2. GeneraZ definitions of the strength criterion

2.1. Working hypotheses and notations

Consider a cinpsite material made of one single array of lonz
parallel fibers (unidirectional composite) periodically distributed
th gmhout a hczmgeneous matrix material in such a way that a rectangular
parallepiped of dimensions a, , a2 , a3 along three orthogonal direc-
tions of a 0xtx 2x3 coordinate system may be exhibited as a representa-
tive volume (Fig. 1), called a "unit cell" and denoted by Q . This unit
cell consists of a cylindrical, not neoessarily circular, volume (f I
of fiber material embedsed in the matrix material which occupies the

remaining part a m of the cell.

The constituents are supposed to obey von Mises strength condi-
tions, namely

F m(g) [j 2 (g 1 2-KM1v'3O <10

for the matrix, and

r (( 1/
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Furtemiore, failure by lack of adherence between the fiber

and the surrounding matrix will be discarded in the present analysis,

thereby assuing perfect bonding between the constituents.

1/2 1/2:£IL 1/2 a ij si with summation over the repeated sub-

scripts.
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2.2. Static definition

According to the yield design homogenization theory (Suquet,

1985) the macroscopic strength condition of the above described cmpo-
site, considered as a homogeneous material, writes

Fh (W < o (3)

where the macrosocpic stress . is computed as the volume average over

C of a stress field y which must comply with the following condi-
tions :

a) bundaxy peAiodicity, i.e. the origin 0 being taken at the center

of the parallelepiped

a (x a-2'= (X - (4-a)
ijXj 2 ) ij = 

+  (4-b)

whatever i and j;

b) eqiteqxment
div g = 0 (arid 1, ] • n across possible stress discontinuity

surfaces) (4-b)

Fm ( x)) <; 0 (resp. Ff a(x)) < 0) (4-c.)

whatever xbelonging to CM (resp. Qf).

2.3. Kinematic definition

Introducing the support function i ham of the macroscopic

strength criterion, defined as (Salengon, 1983)

Vhrn(D) =Sup f : D ;Fhx() O} (5)

V£

NO

,, ,. 7



TIr J ereet n smti ecn re tensor, it can be proved

. v eoe n vlct il giving a strain rate field

2 ala 3_C n Dv+v0nd

defines temean vau ftesri aefielId canpted over the

cell

*and <w (d) > is defined by

-cr()> a, a 2 a3 (J 7 ~m ()da+Ic 1f( dCJ r, fl[vm

+ I rf (n ; [vJ)dS)

S

where

,
Tr (j) has the same definition with Ff

S denotes any jump surface for v

Sm is the portion of S lying in (am)

S f has the same definition withi (Olf)

lvi is the Jump of v when crossing S following its normal n

i m (ni [vD -sup (n~glXI F (9) < 0)
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if (n [2]) has the swe defnt.iuOn with

FfGeerally speakdg, the detemination of the strenth xdition(3) would require the use of heavy numerical methods implementing eitherof the two above definitions- Fortunately the scific geametry of theunit cell :n the case of a unidlrectional camPOsite will be exploited
to derive relevant, though sinPle, analytical estimates for the actualmacr~sO o di tion.

3. oer bound 6tate

Referring to the static definiticn given by Eq. (3) and (4 -a)to I4-c), it is possible to exhibit piecewise constant stress fieldssatisfying all the above prescribed conditions

m a Yx E aM

with

&5<0 and F.Qm f e Gej)O < )

(.e, :ulit vector of Nb1 , parallel to the fiber).

This particular foln of stress fields autnaticaly omplieswith the periodicity condition 14-a) and the equilibrium equation aswell since it ensures the continuity of the stress vector acting atany point upon the interface between the matrix and the fiber.

As a matter of fact, whatever n such that n.e 0

[1n - (of el 0el) .n = of el (el 0

Denoting by j the voluminal percentage of the fibers theacroscOpic stress , defined as the volume average of such a piece-wise onstant stress field writes
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j g a e1  e1  (9)

It can be easily showni (see Append3ix) that sufficient conditions

for to satisfy the macrosopic criterioni (3) are:

wit1 ~ ~ P a) <j(g 0 and lI < Kf -Kn(0

..AfIt follows det~ie a imnediately bea dedce fondittoe

with

if mr=

canalogtus afole for boun aprxmaintoteatulmcrsoi
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Hence for any

ham(Q) [(1 - n) K + n KfJ (2/3 1/2

This proves that the strength capacities of the hcmogenized

oCaMIPosite are inferior to those that would be exhibited by an isotropic

von Mises matarial obtained by averaging the strength characteristics

of the constituents.

In other words:

Ph. o - F(I' 14 2-a)

with

Ft( j2 =[j 2  L 1/2 - <(>/ (I 2-b)

<K>= ( - T) Km + Kf

4.2. Other upper bound estimates can be obtained by considering piece-

wise constant velocity fields in which a discontinuity plane parallel

to the fibers and running across the matrix divides the unit cell into

two blocks. Due to the periodicity condition, such a plane is pres-

cribed to be perpendicular to the Ox. axis, i = 2 or 3 (Fig. 2).

Denoting by V the velocity junp across this plane, one gets

D= ->= (ei 0V+ V e i )  1 = 2,3

and

Si m(e, ; V)

a n-i _

with, as the matrix obeys a von Mises criterion

KVIv//yT if V . =0

i Le, V) =
+ otherwise.
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x 3

V

Fig. 2 VeLocity JieLd invoLving a jump ptane puing thLough the matrix.

The kinematic definition of the macroscopic criterion expressed
by Eq. (5) and (6) leads to the following implication

Fhon(7J 4 O <d>e <7(D>

and therefore

Ph (L e' F+( 0 (13 -a)

where for i=2,3

K
F( O ( .e. V --1 173-b)- VY

whatever V such that V.e 0

------------------------------------------------------
(*) may be expressed by

F+( --=Sup . v- -- .e i =0}v - 3 -

--L .. , _,,rwrm h Jm,,,~ m a-i m
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5. Application to simple loading conditions

5.1. "Plane strain" criteria

The concept of a "strength criterion under plane strain condi-
tions" within the strict framework of the yield design theory, i.e.
without any explicit reference to a constitutive law, has been intro-
duced and throroughly discussed in (Salengon, 1983). It can be briefly
exposed as follows in the present case.

The support function vham defined by Eq. (5) makes it pos-
sible to determine the macroscopic strength criterion through the dual
formulation :

Fhun (1) 140 - Sup {J, :~ C D-, (W} )<o (14)

(cf. Fr&in and FriaA, 1978).

If the latter formula is used with the considered D being
restricted to plane strain rate tensors parallel to Cxlxz , i.e.

satisfying the conditions :

D31 =Di =0 , i= 1,2,3 (15)

it caes out that explicitating Eq. (P 6)

Sup (. : D- hcm (W ; D satisf. Eq. (15)1 < 0 (16)

will provide an upper bound estimate for Fhm (Z) where only the
Camrents T11 , E12 = 121 , and E22 of I are concerned.

As a matter of fact, Eq. (1 6) gives the exact restrictions
imposed to those camponents when generated by any . under the
condition Fham() 4 0. Eq. (1 6) can also be seen as the projection
of the strength domain defined by Eq. (3) onto the subspace of the

E (i,= 1,2) cmpments of y,•
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It can (rather abusively) be named the "plane strain strength
criterion" of the carposite material.

The purpose of the present section is to derive lower and

upr bound estimates for the "plane strain strength criterion" from
the results obtained before.

Let then t and Zi with E > E be defined as the

principal values of the two-dimensional "stress tensor" generated by

the comPmnents El1 , '12 = -21 , E22 in plane OCIX 2 , and e the

inclination of the major principal axis Z1  to the fibers direction

CcI . After sane calculations it turns out that the previously obtained

lower and upper bounds write as follows.

S Lowej bound etimate (11)

F-(Z1 , E1  , ) = E - E - K (6) • o 17)

with putting k =<K>/K > 1m

(k- 1) Icos2e + /4/3 - (k - 1)2 sin2 261

K (a) =Km Iif ltan2 el 4 2/ (~k - 1) /131
( 2/(,r sin 2 e) otherwise

* Uppebound e6tZ mat (12)

EjZI , 1  6) = Y - ZJI - e (6) <0 (18)

where K,(0) = 2k m/,r.

* UppeAbound eztimate (1 3)

For i= 2 , V= V e I and taking Eq. (14) into account (1 3-b) becomes

v12 / 3v
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that is

IE121 -'M

or

(E1  , (1:1, e) -- - k (6) < 0 (19)

where

k(e) =2K/ (3sin 2 )

K IxIxH
k=3+

K

0 30 60 90

Fig. 3 LpeA and lower bound etmae6 6o4 the 6tAength
oS a unidiuctional fibem compo6ite undeA peane stain condition6.
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The variations of K- and Mi (K1  i, as functions

of the orientation 6 are plotted in Fig. 3 where the numerical value

of k - 3 has been taken by way of illustration. It appears that the

relative difference between the two bounds remains loer than 20 % and
even decreases to zero for 6 ranging between 150 and 750. It is

worth noting in particular that the overall strength of the composite

reduces to that of the matrix alone when the principal stresses are
inclined at e = 450 to the fibers direction.

5.2. Bounds on the uniaxial strength

The mcrosoopic solicitation writes in this case

with e - c o s 6 el + sin 6 e_

Denoting by * (e) the uniaxial tensile strength in the direc-
tion e , .defined by :

Fha (±t E* (e) Re a f) = O

the strength ondition for this particular type of solicitation can be

written

Fhanm(,L 1 0 0 ) O - Z *e

The following lower and upper bound estimates can be derived

from the preceding results.

•LowA bound

From Eq. (Il one gets

-( zCe)(201

where
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- Sin) +/ - 3(k - 1) sine 1  sine2

Z-(6) =m i 0o '3 6

f / ( sn2e) if 4 e C

where * is the value of e for which the two above expressions

give the same result.

This low4er bourd estimate decreases continuously fran

- = k Km  for 6 = O to its minimum value Z- = K reached for
6 57",2 (sin e = /3), then increases again slightly up to

= 2 K/Y3 when - 900 (transverse loading) see fig. 4.

E--, ' Kin, x1

4-

k.3
2

21r

0 3'o 6,0 90 0

Fig. 4 : peA and £oweA bounds fo4 the uniaxat 641ength

o6 a untdAcectionat composite.
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0 UppeA boud6

A first upper bound estimate of E* (8) derived fra Eq. 1 2)
is simrply

Makng use of Eq. (13) with i= 2 and V= V el yields

immediately

and the upper bound Z2 (e)

2K
=*(8 (22)

2 3- sin 28 (2

The corresponding curves are drawn in Fig. 4 for k = 3.
Unlike the case of plane strain conditions the gap between the two

bounds widens considerably as soon as e > 600. The actual value of
the transverse strength for instance is bounded by Z'(900) =2Kr/3

and +(90) = k Km

However it can be proved (de Buhan and Taliercio, 1988
Taliercio, 1989) that these bounds turn out to be the exact value
of the uniaxial strength of the camposite for ?I < 1 (reinforcement

by thin fibers) and n = I (matrix voluminal proportion reduced to
zero) respectively. Therefore as a first approach, the uniaxial
strength of the composite could be reasonably well approximated by

the following interpolation formula :

t*(e) = (1 - n) E-(e) + n Z+(8)

The validity of such a heuristic fornula should be confirmed
by a more elaborate inalysis of the problem resorting for instance to

numerical methods in order to solve the yield design problem defined
over the unit cell and thereby to determine the macroscopic strength

condition (Marigo and al., 1987 ; case of periodic porous media).
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6. ConaZuaion

The yield design homogenization method has been successfully

applied to the determination of upper and lower bounds for the macro-

scopic strength of a unidirectional fiber composite material. These

bounds may be expressed by means of explicit analytical formulae in

two circumstances : plane strain loading of the composite in a direc-

tion parallel to the fibers on the one hand and uniaxial solicitation

on the other hand. The two bounds remain close to each other in the

first case, thus providing a good estimate for the actual strength

of the oaq osite, whereas they diverge considerably in the second

case when the oaqsite is subjected to transverse loading. Such a
drawback could be partially overcome by proposing a semi-eypirical

fonmula which linearly interpolates between the two bounds.

Append x

Let ; be a macroscopic stress such that

m f
g. m + T) a fe 0 el 9

with

F (0m M m /2 K/yr' 0 (10-a)

and

ko <Kf - K10-b)

It coaes out immediately

Ff( m + a f el Oel)

[J2(m + a1/2 -OFDe]

P2 (2'))] /2 + Ij2(' f el 0 el) 1/2 -Kf//3

.. . Imlm
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since 1J2  1 ]1/2 can be regarded as a norm for the deviatoric

stress §.

Consequently on account of (1 0)

I + f  ) (Kf -

This last inequation shows that conditions (9) and (10) are

sufficient to exhibit a piecewise constant stress field such as (7)

in equilibrium with I and satisfying the strength conditions

defined by (8).
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Static and Fatigue Biaxial Testing of Fiber
Composites Using Thin Walled Tubular Specimens

by Tresna P.Soemardi, Dawei Lai and Claude Bathias

Abstract

A design and analysis of a multiaxial fatigue system employed for the testing of high performance continous

fiber laminates are presented. A multiaxial laminate specimen based on axial-force and torsion loading of a thin
walled tube has been developed which is appropriate for static and fatigue biaxial testing. The room temperature

static biaxial tests and R=-I fatigue biaxial tests at 1 Hz are also reported. In addition recent results on the
biaxial failure of glass fiber/epoxy [00] and 1±450]s tubes are presented and compared with theoretical failure

envelopes.

Introduction

Acceptance and utilization of advanced fiber composites in structural application are steadily

increasing, because of their combination of iigh performance with low density and potentially

low unit cost.The composite investigated in this study is to be used by the R6gie Nationale des
Usines Renault-France for the automobile application of the suspension parts.The use of
composites in load bearing structural parts like suspension components depends, to a large
extent, on their ability to withstand multiaxial cyclic loading. It is therefore important for the

designer to be well aware of the multiaxial fatigue behavior of the materials.Until now, design
rules for multiaxial strength design of laminates are not wholly established.Previous
investigators (see for example Owen and Griffiths (1978), Eckold et.al.(1978) ,Guess (1980),
Owen and Rice (1981), Found (1985), Choo (1985) and Swanson et.al.(1988)) have reported

that it is difficult to relate simple component tests, to the multiaxial strength properties of a
laminated or filament-wound structure. In part this is due to the multiplicity of failure modes

involving either fibers or matrixs or both, the many possible lamination sequences of interest,
and certain complexities inherent in composite materials (see, Swanson, Christoforou and

Colvin (1988)).

Further, there does not seem to be a well -established data base on the strength of composite

laminates due to certain complexities inherent in composites such as free-edge stress

concentration effect gross local buckling, local delamination and interfacial debonding,
etc.(see,for example,Kim and Ebert (1978), Pluvinage(1987),Swanson,Christoforou and

Colvin (1988), Soemardi, Lai and Bathias(1988,1989)). Another complexity is the large
difference between the strength of the fiber and the matrix that must have ibers placed to carry

the major loads. Additional complexities . - that composites tend to have a sensitivity to the
effect of specimen size and geometry (bar,platecylinder, etc.)(e.g.,see Bathias(1989)) and to



582

stress concentration, making it somewhat more difficult to conduct well-characterized

experiments (see, Swanson et.al(1988)).
A desirable approach to the problem of determining laminate multiaxial strength would seem to
be that of characterizing the strengths of the individual plies under well-characterized multiaxial
stress conditions in all possible failure modes. For determining laminate multiaxial strength,a

number of previous investigators have used tubular specimens in order to avoid the edge-effect

problem, as well as to take advantage of the ease of introducing multiaxial loading into this

specimen (see, for example, Wu (1972), Grimes and Francis (1973), Guess and Gerstle
(1977), Owen and Griffiths (1978), Duggen and Bailie (1980), Daniel et.al. (1980), Meshkov

et.al (1982), Choo and Hull (1983), Foral and Humphrey (1985), Pluvinage(1987), Swanson,
Christoforou and Colvin(1988), Soemardi, Lai and Bathias(1988,1989)). However, it is clear

that the problem of end effects in tubular specimens use for composite materials must be

accounted for(see, Whitney et.al(1973), Duggen and Bailie(1980), Daniel(1980), Swanson

et.al(1988)).
In recent work we have developed a tubular specimen that appear to minimize these undesirable

end effects, and have applied this specimen to a number of different test conditions and
laminates (see, Pluvinage (1987), Soemardi, Lai and Bathias (1988,1989)). In this paper the
design and fabrication of this specimen,the analysis that justifies this design are presented, and
the method and the procedure of testing under static and fatigue biaxial loadings and the results

of recent test programs are reported. A number of theoretical failure criteria are applied. Failure
and damage stresses were compared to four criteria: three based on lamina strengths (TSAI-
WU, MAXIMUM STRESS and NORRIS interaction), and one based on laminate uniaxial

strength (NORRIS interaction). In fact, our research objectives were to study the damage

mechanism and mechanical behavior of fiber composite tubes under static and fatigue biaxial
loading. Research is continuing to study the microscopic failure mechanism in specimens by X-

Ray Computed Tomography and Scanning Electron Microscope.

Specimen Design and Fabrication

Initial Tubes
The initial thin-walled glass fiber/epoxy tubes consisting of eight layers of [0'] and [±45]s

laminates, which were supplied by the AEROSPATIALE-FRANCE were made of E-Glass
fiber-epoxy resin 921GE5 unidirectional prepreg sheet (manufactured by CIBA-GEIGY),with

65,5% glass fiber mass content. Fig.l shows the initial thin walled glass fiber/epoxy consisting
of eight layers of [0] and [±45°]s laminates for achieving of about 1,5 mm tube wall

thickness.The tubes are constructed in a nominal length of 150 mm with 54 mm gage length.

The procedure for making initial thin-walled tubes was as follows. The unidirectional prepreg

sheets were cut from the roll and wound around a blowable mandrel after it had been sprayed

with release agent dry lubricant and the whole was placed in a rigid cylinder. And then the
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internal mandrel was blowed up in order to form the layers of prepreg sheets according to the

external shell. The curing cycle consisted of a 135'C 2 hours and 0,4 MPa (4 bar) closed
mould.The assembly was then slowly cooled to room temperature. A curing process including
preheating and cooling lasted five to seven hours. Finally the tube was removed and then the

wall thickness was measured at its two ends and middle circumferentially. Statistically, the real

nominal wall thickness of an initial tube was 1,3±0,25 [mm] and Rm = 1/2(Ro+Ri) = 26,75

mm.

Cone-shaed end mounting and reinforcement
The stress concentration associated with the end-gripping region of a tubular specimen can lead

to unacceptable problems, especially when used with materials such as composites that are
relatively sensitive to stress concentrations. This problem has been addressed by adding

material reinforcement to the end regions, and gradually tapering this reinforcement into the

gage section of the specimen. The end reinforcement is then added to the specimen, consisting

of fiberglass cloth overwraps with nearly the same glass content and a lower modulus epoxy.
The cone-shape end mounting and reinforcement of the tube used in this study are the most

desirable solution and the most feasible for the type of tube end mounting and reinforcement
had been used in 1964 by Hotter,Schelling and Krauss, and followed by the other previous
investigators (see, Highton and Soden (1982),Krempl and Niu (1982), Foral and Humphrey

(1985) Swanson et.al (1988)). Fig.2 shows the thin-walled glass-fiber/epoxy tube with a
conical or a tapered section on each end. This section is made of Stevens-Genin glass

fiber/epoxy prepreg sheet. The procedure for making this conical section was as follows. A
triangular prepreg tapes were cut from the prepreg and than wound around the ends of the tube.
The determination of the optimum dimension of this triangular prepreg tape have asked for

many trial and error models for obtaining a near perfect conical form. The assembly was then
placed in two high precision moulds made by the Centre Technique Renault. Conical sections of

the mould were manufactured precisely for obtaining an angle of six degrees in according to
outer grip components. The moulds assembly with the reinforced tube inside was cured after it
had been sprayed with release agent dry lubricant (WARLON-Spray Model-122, Fluorocarbon-

release agent), with the curing cycle consisted of a 80*C 30 minutes preheat followed by 1200C
and 0,6 MPa (6 bars) curing for 90 minutes. The moulds assembly was then slowly cooled and
opened at 60°C (see Fig.3). This completes the specimen preparation.

Specimen Mounting

The type of the fixture used in this study (see Fig.4) compelled us to design carefully the
geometry of the conical end section and its split wedge.Particularly the conical angle of this
section in order to avoid sliding in torsion loading transmission. There is no problem in tension

m
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loading transmission. The 60 angle was determined based on the design calculation in the
function of friction coefficient and sliding contacts between two materials, and also the ease of

releasing the specimen from the fixture (see, Pluvinage (1987)). The first design outer grip was

made of Aluminium with ordinary surface machined innerside. Because of the lightness of this

outer grip made us easier in specimen mounting and releasing. But under maximum pressure

on the specimen conical shaped end surfaces, still slippage exist under more than 600 Nm in

torsion, even the tube [±450] ultimate torsion reached 1200 Nm. We have designed a steel outer
grip with a rough machined inner surface for overcoming this slippage.Of course we have to be

more careful in mounting and releasing the specimen because of steel outergrip weight and
inner surface roughness which can damage the specimen surface easily. An assembly drawing

of the fixture with specimen is given in Fig.4. It consist of a main cover cylinder (2) which is

bolted to the testing machine load cell (or fie activator piston). The main cover cylinder is
removed when the specimen, the attached outer grips(4) inner grip (3) are inserted. Tightening

of the bolts presses the outer grips(4) and grips the specimen securely. To present crushing of

the specimen an inner grip or a plug with a circle ends(3) is inserted into the specimen bore.
The circle ends fit into a corresponding recess in the main cylinder(l). It is seen that torque is

transmitted by friction forces on the inside surface of the inner grip and on conical outside

section of the specimen. A schematic of the components, method of gripping and assembly of

fixture is shown in fig.4. and photograph of biaxial-stress-test specimen in the loading frame in

Fig.5.

Specimen Analysis

Contact Analysis
Contact analysis between two surfaces for determining p, the pressure on the cone-shaped

surface and M, transmitted torsion were calculated from formulae,

4F [MPa] (1)

nt(D2d2)[ tang + 1]
tan(ce/2)

using axial load, F(N), conical section greatest diameter, D[mm] and smallest diameter, d[mm],
friction coefficient, gt=tan 0 , angle of friction, 0 and conical section half -angle, a/2,

M = p tan (P0/(D 3-d3)l0-3  [MPa] (2)
12 sin(a/2)

using adhesion coefficient, go = tan 9,o, angle of adhesion, (Po.

Based on equations (1) and (2) a plot of pressure on the conical surfaces, p vs axial load (F) as
a function of angle (a) and also F vs the transmitted torsion (M) also as a function of angle (CEt)

-

N.40.
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were found.The friction coefficient (it) between Aluminium surface and textile /epoxy was

evaluated about 0,3 and the adhesion coefficient about 0,1.

Analysis on the stress distribution

In our previous work (see Pluvinage (1987)), finite-element analysis has been used to establish

the specimen design, for justifying that stress distribution are uniform throughout the gage

section. The results of the analysis of the current configuration will be presented here for

unidirectional [00] and angle-ply [±45'], glass fiber/epoxy laminates. The finite-element code

MEF has been employed, using linear-elastic orthotropic six-node triangular elements. The wall

thickness of the tube is 1,5 mm. Two computer program were used for the present investigation

of the tubef. The first was Mesh pattern program (MOSAIC) capable of performing optimum

mesh pattern and the second computer program (MEF) used for finite-element calculation. Both

were originally developed at '.he Universit6 de Technologie de Compiegne-France. Our tube

specimen was symetrical about the gauge length so only one half of the tube was analysed.

Axisymmetric triangular elements were available in MOSAIC fc r tension and torsion loading.

Six-node (isoparametric) triangular elements were adopted. Finite-element calculations were

carried out for axial tension and torsion loading in the elastic region. The material properties

used are shown in table 1. The results are shown in Fig.6 for axial-force loading and in Fig.7

for torsion loading. The stresses for biaxial loading can be obtained by superposition of the

stresses from axial-tension and axial-torsion. It can be seen that the axial and shear stresses are

uniform throughout the gage section, and decrease in the vicinity of the ends. The stress is

explained in normalized stress in percentage of the stress ii. the middle of gauge length, co. In

Fig.6, it can be seen that the axial stresses, oz are uniform in the thickness throughout about

40% of the gauge section. At the outer surface of [001 laminate axial stresses at the end of the

gauge section reach about 140% of the c or 275 MPa and 60 MPa for the [±450] laminate. At

the inner surface at the same side reach 60% of the 00, or 118 MPa for [00] laminate and 26

MPa for [±450] laminate. It means that the effective gage length only 40% of the gauge section

between the two conical ends. The gauge section length is 54 mm, so the effective gauge length

is about 22 mm in the middle of the gauge section. This is important to note for determining the

extensometer working gauge length. In Fig.7, it is seen that the shear stresses are also uniform

throughout the gage section. There is a little variation , about 4% at the middle and at the end of

the gauge section. It has been mentioned that there is stress variation in the tube wal thickness,

however, these effects are still negligible for the present tubes. It may be noted that numerical

simulation by FEA well justified specimen and fixture design. We should obtain a sufficient

uniform stress distribution area in the gauge section for using an extensometer.

" ~~~~~~~~ 4t, ~man u u mm i
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Method of Testing

For this paper, test objectives were to characterize the composite laminates in biaxial loading for
ultimate static and fatigue strength. Axial-tensile stress , was produced by axial loading
through end grips, and the shear stress T,, was generated by torsion loading. A tctnl of one
hundred specimens were tested at room temperature under uniaxial and biaxial static condition

and under completely reversed load controlled uniaxial and biaxial loading at load frequency of
1 H. Proportional biaxial stressing of the specimen was achieved by adjusting the ratio of axial

to torsion load with closed-loop electro hydraulic test equipment. All experiments used an
INSTRON tension-torsion servohydraulic testing machine Model 1343. Electrical resistance
strain gauges and an INSTRON Biaxial Extensometer (Fig.7) were used to monitor surface
deformation in static tests. All the strain gauges were connected in quarter bridge formaLion. A
data logging system was used to collect data from load(torque) transducers and strain gauges
(extensometer). A micro-computer was connected to the data logger via the RS-^ 32 interface.
A real time data acquisition software, SEUC, was used for data tabulation and experimental
graphics view. Only Instron biaxial extensometer was used in the fatigue test with sinusoidal
load variation and zero mean load(R=-l). A fatigue test was terminated when the axial stroke
went beyond 20 mm and the radial stroke went beyond 200 or catastrophic final failure was
achieved. Catastrophic fracture was considered as final failure in fatigue testing. During fatigue
testing, the hysteresis loop history was recorded in the data acquisition from the start until final
failure, for further evaluation on stiffness degradation. In static tests, the specimens were tested
by steadily increasing the load (torque) with linear variation over a period of about one minute.
Firtst damage or first resin cracking of all specimens wvere identified by Acoustic Emission and
also by visual examination aided by the light inside the specimen during fatigue testing, and the
temperature on the gauge surface were also monitored.

Theoretical Consideration

Failure theories for anisotropic materials in plane stress conditions are in general empirical. The
experimental values of laminate failure stresses are here compared in the tension-torsion an
compression-torsion quadrants to a failure envelope based on laminate uniaxial strengths and
three sets of failure envelopes calculated from lamina strengths.

Laminate aiure criteia
The one chosen for comparison with experimental data was proposed b: Norris and Mc Kinnon
(1956):

Uz ")2 tZ )Ee,2+ (Y- 1 (3)

M10
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This laminate failure criteria models the composite structure as a homogeneous, anisotropic

solid, making no distinction for its layered construction and the possibility of different stress

state within the individual layers. Fracture is thus interpreted in terms of average laminate
uniaxial strengths (F. in tension and Sze in shear).

Lamina failure criteria

The experimental values of ultimate strengths for individual layers or lamina within a composite
structure have also been used as the bases for predicting laminate strengths. A thourough

review of many failure criteria applicable to ply-by-ply analysis is presented for example by

Owen and Griffiths(1978), Owen and Rice(1981) and Nahas(1986). Those considered in this

paper were:

07 C2 112
the lamina maximum stress criteria: ()_> ; ; (4)

where, XY and S are the unidirectional strengths,

the Norris interaction: (k)2 + (_)2 + t)2 = 1 (5)

and Tsai-Wu criterion: Flo+Ftlat 2+F20 2+F220 2
2+2Fl 2at2+F66062 = 1 (6)

1 1 1 1 1 1
where, F1 = -- ' F 2 = Y-'r , FI = XX-, F22 =YT, and F 12 the interaction term can be

treated as empirical constant (see, Tsai(1988)).

On application of lamina failure criteria

Application of a lamina failure criteria for predicting the damage and failure stresses is an

analytical approach, a combined Lamination Theory (LT) and the criteria itself. Using LT, the

natural co-ordinate ply stresses are found using the equation:

{oln IQ' (e), (7)

where (o). is the column matrix of natural co-ordinate stresses and IQI is the orthotropic

Hooke's law matrix for the ply. The amplitude at failure of the known ratio of the three stress

components can now be predicted for the individual ply using a chosen lamina failure criteria.

The laminate failure load are found using (see, Sne11(1978)):

{N)f=p (N) (8)
where p ff In this paper we used the applied stress ratio notation, S axial stress

whr nI shear stressan
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Static Test Results and Discussion

Static tests on glass fiber/epoxy [00] tubes were performed in order to establish the lamina
properties for this material. Static tests on the same material unidirectional coupon specimens
were also performed in our previous work (see Pluvinage (1987)). Table 2 lists experimental
and estimated properties of unidirectional [00] glass fiber/epoxy tube using [0°] laminate.
Typical stress vs strain response of [0 ] tube during a tensile and torsion test are shown in
Fig.8. Stress/strain response to failure were perfectly linear under axial tension load and non
linear under pure torsion load. The same modulus is obtained when a [00] tube is loaded into

compression. The compressive strength is lower than the tensile strenth (65% of the UTS). The
tensile strength data of [00] tube has considerable variation. It is not surprising for non-
homogeneous and low elongation composite laminate. Under torsion ,main fracture modes
were resine fracture paralell to the fibers (see photo in Fig. 11) and the initial micro crack was
found at 50% of the ultimate shear stress. Beyond this region, the c-y curve is no more linear.
Typical uniaxial stress/strain curves for glass fiber/epoxy [±450]tube are also shown in Fig.8.
Stress/strain responses to failure were perfectly linear under torsion load and non-linear under
axial tension load. The initial slopes of the stress/strain curves in tension were used to determine

the elastic modulus of [±450] laminate in simple tension. The same modulus is obtained under
axial compression and the compressive strength is significantly lower than the tensile strength
(60% of the UTS). Based on these data and the lamination theory there is excellent agreement
between the analytical stiffness matrix based on lamina properties and experimental results on
[±450] laminate(see Pluvinage(1987) and Soemardi et.al (1988,1989)). These composite

systems follow the expected results that the stiffness matrix of composite laminates can be
calculated with reasonable accuracy from laminated plate theory, stacking pattern and lamina
properties as mention by previous investigators (see, Snell(1978), Guess(1980), Swanson and
Trask(1980)).
The fundamental results of the biaxial static test is the failure stress diagram. These results show
that there is a strong interaction between the axial-stress and the shear stress at failure of [00]
tubes (Fig.9) and [±450] tubes (Fig.10). The stiffness of multi-directional cfrp laminates
adequately determined using lamination theory, in contrast, biaxial failure stresses prediction
for these laminates has hitherto been uncertain, although the recent use of various failure criteria
has yielded reasonable agreement with experimental data for the biaxial strength of
unidirectional composites, as also shown in Fig.9. Failure envelope in this figure correspond
more to the matrix failure. The major fractures of [00] tubes are matrix failure along fiber
direction and the fracture of fibers was found only under uniaxial tension loading ( see Fig. 11).
For the biaxial static test data of [001 tubes in Fig.9, the failure and damage stresses in the
tension-torsion quadrant are in good agreement with circular arcs based on Norris and Tsai-Wu
formulas, and based on limited data in the compression-torsion quadrant the Tsai-Wu quadratic
formula is seen more reasonable. It is more interesting to compare the failure data of a
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multidirectional laminate with the results of failure theories applied on a ply by ply basis. The
four theories as applied to glass-fiber/epoxy [±450] laminate under biaxial loading have been
plotted in Fig.10 and compared with experimental biaxial damage and failure stresses. The

"TSAI-WU" is an analytical approach, a combined Lamination theory (LT) and Tsai-Wu

criteria. Using LT, the natural co-ordinate ply stresses are found using the equation(7). The
amplitude at failure of the known ratio of the three stress components were predicted for the
individual ply as shown in Fig.10 using Norris interaction,Tsai-Wu and Maximum Stress
criteria. The laminate failure load are found using equation(8).The failure stresses in the

tension-torsion quadrant with applied stress ratio 0<S<2, and in the compression-torsion
quadrant with O>S>- 1 (both are torsion dominant quadrant) are in excellent agreement with the
Tsai-Wu criteria. Based on twelve experimental points only three points lie within the Tsai-Wu
boundary with the little relative scatter variation compared with the Maximum Stress citeria. For

pure tension, the Tsai-Wu is very under estimate, this may have been caused by the fiber failure
which occured as the real major fracture. For pure cotimpression, the Tsai-Wu is very over

estimate, it is caused by unexpected local buckling and delamination which occured as the
premature damage. The Maximum Stress and Norris laminate fit the data in all stress ratio
equally well and more reasonable for predicting failure under pure tension and compression. In

contrast, the Norris lamina failure criteria is very underestimate in shear dominant quadrant with

the both failure and damage biaxial stresses. Nevertheless, the Norris lamina is seen applicable

for predicting the uniaxial failure and damage of the laminate under pure tension and
compression (So and S=-co). An alternative, Norris laminate criteria which consider laminate
as a whole fit also the data equally well with the maximum stress. The disadvantage of the
Norris laminate, however, is that each different laminate of interest would have to be examined

separately. With the ply by ply approach, there is the hope that failure rules can be identified
that will hold for other laminates. Further, the laminate failure criteria are empirical and provide
no insight into the lamina modes of failure, the sequence in which they occur, or single (or
combination of) lamina failure modes that lead to total fracture of the laminate. For predicting

the biaxial damage in all applied stress ratio, the Tsai-wu is seen most reliable and is in excellent
agreement with the biaxial damage data.Typical fracture specimens under static loading are
photographed in Fig 11. The fracture surfaces of the [±450] tubes differed more significantly

than the [00] tubes, depending on the type of test. Fibers failure normal to the longitudinal axis
of the [±4501 tube was found under uniaxial tension and under pure torsion. A gage wall
striction was observed beyond 75% of the UTS, and remained permanently after failure.
Laminate failure path with angle of 450 (angle of principal stresses under torsion load) was

found under pure torsion and under biaxial loading. Under axial compression, local
delamination of the outer layers appear to initiate laminate failure normal to the longitudinal axis.

, ', :'" " ., " :' " ' U • i
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Fatigue Test Results and Discussion

Fatigue tests on [0°] tubes were initially conducted under uniaxial and biaxial completely
reversed load (R=- 1) at 1 Hz in order to obtain the laminate fatigue behavior. Based on these
results and the prediction on the lamina transverse direction fatigue behavior, we can establish
the lamina fatigue life surface with a certain likely failure mode:

(01a, 02a, 112a = f (N (9)

Fig. 12 and Fig. 13 show the results of the uniaxial fatigue tests on the composite for [O] tubes
and [±4501 tubes under Completely Reversed Tension-Compression (CRTC) and under
Completely Reversed Torsion-Torsion (CRTT). The alternating stress amplitude, cra is plotted
as a function of the logarithm of the Number of cycle to failure,N (catastrophic rupture was

considered as failure). In both Fig.12 and Fig.13 is seen that glass-fiber composite exhibit
significant degradation of strength with number of cycles. The likely fracture modes of [0°]
tubes under CRTC and under CR1'r are matrix failure along fiber direction (see photograph in
Fig 20), in contrast fiber failure are the major fractures for [±450] tubes. For both specimens the
fractures occur within the gage section, it indicate that specimen design is adequate for biaxial
fatigue testing purpose. The typical damage process was found during axial fatigue testing on
the [±450] tube. As reported in our previous works under monotonic tension load the [±4501
tube exhibited a non linear response with a high elongation and a time-dependent deformation.
Similar phenomenon have been reported by Krempl and Niu (1982). Other particular, typical
striction occured under high tension stress. Under CRTC at short lifes (N:5 105 cycles) the tube
wall exhibited also a visible striction during tension phase. Due to this significant striction
effects carry over to the higher stress condition on the inner surface of the tube wall. This
phenomenon and the completely reversed loading caused the initial damage in the form of inner
surface ply failure normal to the axis of the tube. The crack propagation process was observed
started from the inner surface circumferentially, and the reduction of load bearing effective area

carry over to the high local elongation prior to failure. During axial fatigue testing a hysterisis
loop developed which continously changes. Under load control, the axial strain and diametral

strain can change with a gradual progression. This hysterisis indicated the "local damage"
process explained above (see corresponding fracture mode in Fig.20). This typical local damage

process of [±450] tube in axial fatigue testing, was accelerated also by the rise in temperature
prior to fracture. It showed that local irreversible damage cause a frictional heating. At failure
the temperature has exceeded 80*C with the axial stiffness degradation about 10% nearly before
total fracture. Based on this ramification, the significant intacts of stiffness degradation and rise
in temperature will be a potential indicator for determining the starting damage in axial fatigue
testing of composite [±450] tube. Fig.14 shows the theoritical life surface of the lamina in terms
of alternating axial stress amplitude ((Y,), alternating shear stress amplitude (xy.) and Number

-0
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of cycles (N). It is plotted based on the Norris interaction by equation(5),whereX(=xau) and

S(=,txyau) are the lamina life strength under CRTC loading and under CR1'T loading, were

predicted based on the S-N curves for R=-I uniaxial and torsional fatigue showed in Fig. 12

and Fig.13. It is seen that this simple formula fits good the biaxial experimental results

particularly for the long fatigue life (105,106,...). It is important to note that this life surface

represent the matrix failure as likely fracture mode for the [00] tubes in uniaxial and biaxial

fatigue testing. Fig 15 shows the theoritical life surface of [±45 ] laminate based on the same
formula in equation(5) with axau and 'txyau applied on a laminate basis. This theoritical life

surface fits good also the results. It is more interesting to compare with the theoritical life
surface applied on a ply by ply basis for well contributing the engineering design need on
composite materials.
The literature on multiaxial fatigue behavior of composite is not very abundant, particularly for
the fatigue included compression loading as also reported by Krempl and Niu(1982). Some
references have reported the application of fatigue failure theories on a lamina basis(see Francis

et.al(1977,1977a,1979),Owen and Griffiths(1978),Owen and Rice(1981),Found(1985)).
It was not practicable to cover all the condition of the fatigue program for exploring the
theoritical damage and failure of [±451 laminate under biaxial fatigue loading. Other

consideration, at high alternating stress amplitude, the role of compression in damage process is
dominant. In this case, the results will not be reasonable with existing failure theories. A
reasonable starting for justifying the validity of existing failure theories in the compression
included fatigue (negative R) is to conduct fatigue experiment more in long life level (N=
105,106,...). In this life level the compression is in balance with the tension in the damage

process. Fig.16 shows the comparison between theoritical interactions based on lamina basis
and the 105 cycle fatigue damage and failure stresses. The experimental 105 cycle failure
stresses represent the fiber failure as a likely fatigue fracture mode of [±45°] tubes (see Fig.20).
At 105 cycle life, the critical matrix damage was found at about 8,5x 104 cycles indicated by
significant intact degradation in stiffness and rise in temperature which accelerate the damage
process to failure. In this case, the matrix failure life and total failure (fiber failure mode) life is
not much difference. With the above explained compression and heating effects, Fig 16 shows
the results which indicate failure stresses at 105 cycles are not in in agreement with the
theoritical interaction particularly in the axial stress dominant quadrant.The failure theory for the

compression included fatigue loading is in good agreement only in the low axial stress
quadrant. Nevertheless, based on limited test data the damage stresses at 105 cycles are in good
agreement with the two lamina criterion Tsai-Wu and Maximum Stress and the Norris laminate
criteria. Fig 17 shows the maximum stress theory fits fairly good the fatigue results for the
rupture and the onset of damage in [±450] tubes at 106 cycles. Fig.19 demonstrates the

illustration for the compression and heating effects on the life stresses of [±45 ] tube. Fig. 18

. .. . m nm a mmll n u l • l m t hm n n n m • m u u
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shows the N scatter for the life stresses in Fig 16 and Fig 17, and table 3 shows the principal

fatigue strength of lamina for failure theory prediction at 105 and 106 cycles.

Summary and Conclusions

A detailed design has been presented for a biaxial test tubular specimen, subjected to

combinations of torsional and axial loads, that appears to furnish valid data on the response and

failure properties of composites. We have addressed the problem of end effects by reinforcing

the ends with a cone-shaped end reinforcement blends into the gage section of the specimen.A

method have been presented for designing, analysing and fabricating end reinforcement and

grips for composite tubular specimen, and by this means it was possible to ensure that failure

occured within the gage length. Fixtures are described appropriate for static and fatigue testing

of thin-walled composite tubes of 55 mm outer diameter and for use in an Instron

servohydraulic tension-torsion system. The methods described could be readily applied to a

variety of tubes, reinforcement and loading conditions. Experiments include the results of one

hundred tests on glass-fiber/epoxy [0*] and [±45*] tubes together with a number results for flat

specimens have been performed. T1.e room temperature static axial, shear and biaxial properties

of tubes of eight layers of [00] and [±45*]s glass-fiber/epoxy were determined. The agreement

between theoritical interaction an experimental data was in most cases quite good. For the

[±450]tubes, the Tsai-Wu quadratic formula agree with the measured failure data particularly in

the shear dominant quadrant (-l<S<2), and is in excellent agreement with the biaxial damage

data. For biaxial fatigue loading conditions using R=-I (completely reversed loading) and

frequency of 1 Hz, the simple lamina failure theory which is the maximum stress criteria fits the

data in most cases reasonable at long life (106 cycles). Since the maximum stress theory is more

conservative and simpler, its use is recommended for engineering design. At the short life

(N:510 5cycles), the compression and heating effects is important in fatigue damage process of

glass fiber/epoxy [±4501 tube in the axial load dominant quadrant . In this case the theoritical

interactions were in poor agreement with the fatigue failure data.
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Tables and Figures

Table 1. Elastic properties used in specimen analysis

IProperty I Value

E2 10 GPa
1-G 2 4;OPa

Vi2 0,30

Table 2. Summary of glass fiber/epoxy lamina properties.

Elastic constants -9-eng-FS - -0 5iu Valesnrci
Ex -T P 50 Ma 25MPa

1jYT,=P T a -40Wt 2 MWa

nx 0,28W [* 118 MPa 60 Wa
ny 0,07 13 M-a 20MPa

Table 3. Fatigue principal strengths of lamina for failure theory prediction at N cycles.

N esin cracicng strengts [ al Rupture strengts Pa]
Zclel Xa Ya Saj Xa Ya Sa
1 - 150 10 10 199 12.5 19
IF 145 9 9 195 11.6 17
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Fig.4.(a) Components, (b) Method or gripping, (c) Assembly or ri%ture
(1)testinR machine load cell (2) main cover cylinder (3) Inner grip (4) outer grip

(5) conical end reinrorcement (6) tube wall

Flg.S. Buaxaul-stress specimen in test leading frame



597

normalized stress
SO Ct(o(%)

100 3
LC[Cr~rexternal radius

*50 rdu

sog. 100 150

Fg6Finite-Element Solution for stress distribution in a composite tubular test specimen
under axial tension (imposed deformation 0,1 mm)
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Fig.7 Finite-Element Solution for stress distribution in a composite tubular test
specimen under torsion (imposed torsion 17 Nm).
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Fig.U Typical stress/strain responses for [11 and [±45~] tubes during tensile and torsion
tests.
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Fig.9 Experimental biaxial failure stresses of 1011 tube and the theoritical interactions.
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Fig.1O Experimental biaxial failure stresses of j±45'] tube and the comparison with
some tbeoritical criteria based on lamiina properties.
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Fig 11. Photograph of typical failed specimens under static loading.
(1,3,5) [00] tubes under monotonic axial tension, compression and torsion
(2,4,6) [±4501 tubes under monotonic axial tension,compression and torsion
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Fig.12 Typical axial fatigue results for [001 tubes and [±450] tubes, R=-1, I Hz.
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Fig.15 Fatigue results for rupture of [±450] tubes presented in lire surface diagram.
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FIg.16 Fatigue results for the rupture and for the onset of damage in [±4501 tubes at 105

cycles compared with the theoritical Interaction on lamina basis and laminate(*) basis.
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Fig.17 Fatigue results for the rupture and for the onset of damage in [±45') tubes at10
cycles compared with the theoritical interaction on a lamina basis.
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Fig.18 Scatter of N for the biaxial stresses plotted in Fig.16 and Fig.17.
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tat aN=105 6

theoretical - experimental E compression and heating effects

Fig.19 Ilustration for the completely reversed loading(R=-1) and heating effecs inf±45']
tubes on the agreement with the theoritical interaction on a lamina basis.
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Fig 20. Photograph of typical failed specimens under fatigue loading.
(1,3,S) [OOjtubea under tension -compression, torsion-torsion and
tension/compression-torsion
(2,4,6)(±4S*]jtubes under tension-cornpression, torsion-torsion and
tension/compressiou-torsion
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Mesomodeling of Damage for Laminate
Composites: Application to Delamination

P. LADEVEZE -0. ALUX - L DAUDEVILLE

Laboratoire de Mdcanique et Technologie
ENS Cachan/CNRS/Universit6 Paris 6

61 avenue du Prdsident Wilson 94235 CACHAN CEDEX

For Laminate Composite Structures such as T300-914 composites a material mechanical modeling
is proposed.When included in a structural analysis code, it allows to simulate the failure of a structure

and mom generafly to estimate its damage state compared tD one or several ultimate statesa
Damage refers to the more or less gradual development of microvoids and microcracks. Brittle and

progressive damage mechanisms are both present.

For laminate composite structures, the first idea is to reduce the behavior of any composite laminate
to the modeling of two constituents : the elementary single layer and the interface. The latter is a zero
thickness entity which depends on the angle between two adjacent layers. Another point is that the
damage state is constant within the thickness for the single layer. Thus, we have chosen a particular
scale, named mesoscale, for damage modeling. It is an intermediate and preferential scale between
the macro and micro scales where damage phenomena can be described in a simple way.

The modelings include anisotropic unilateral damage and anelastic behavior following a general da-
mage mechanics approach for composites given in Ladeveze 1983 - 1986 - 1989. Then, new va-
riables, named damage variables and related to the change of elastic constants are added to the classi-
cal ones in order to describe the state of the material. This type of damage indicator has been introdu-
ced by Kachanov 1958 and Rabatnov 1968 and has been developed since 10 years by many authors.

The modeling of the elementary single layer, aside the rupture of the fibers, takes into account the
microcracking of the matrix and the deterioration of the fiber-matrix bonding, which are considered as
separate damage mechanisms (see Le Dantec 1989). Some more or less qualitative information is thus

tansfered at the single layer level by means of a homogenization technique. The observed compres-
sion behavior in the fiber direction which is different from the tension one is also included. For static
loadings, the classical laminate theory enables us to identify the material constants and functions by
means of three tensile tests [+45,-45]2., [0,9012 s, [62.5,-62.512, and a four-point bending test on
[0 ,9018,. The paper completes previous works Ladeveze 1986. Gilletta and al. 1986 and gives a final

modeling. Our aim is to insist on the nossibilities of such a simple modeling : several examples are

detailed which allow a comparison with other approaches. For two materials T300-914 and IM6-914,
our modeling has been checked on various stacking sequences with various tensile directions. This
Compaison which is satisfying is reported hem.

The interface is a two dimensional entity which ensures displacement and traction transfers from
one layer to another. Its influence is located near edges or defects where a three-dimensional stress
state may occur and lead to detamination. A simple damage modeling with anelastic behavior is given.
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A first application on a mode I delamination problem is presented. The numerical results allow to

appreciate the connection between this approach and the classical one which uses linear Fracture

Mechanics.
To end, the approach is used to compute until rupture a composite structure. The rupture pheno-

menon happens after two phases. In a first step, it is the initiation damage stage. From the critical

point (or from a point just beside), the strain and also the damage variables become more and more

localized ; a macrocrack appears and grows until becoming unstable. If the first stage is for any mate-
rial well described with a damage approach, the full calculation of the rupture leads to severe difficul-

ties. For our approach of laminate composites, such difficulties vanish. First computation results ob-

mined by Allix 1989 on the delamination analysis of an initially circular hole are given.

1 - Mesomodeling of a Composite Laminate - General Ideas
The composite may be schematized by:

-a single layer which is homogeneous in the thickness
- an interface which is a surface entity connecting two adjacent layers and which depends on

the relative directions of their fibers.

Figure 1: Laminate modeling

These entities being modelized and identified, the mechanical behavior reconstitution of any laminate

is then a relatively easy task.
We consider here single layers with only one reinforced direction. Let us note that the single layer is

also analyzed at the level of its constituents : fibers, matrix, interfaces. Some more or less qualitative
information is thus transfered at the single layer level.

2 - Modeling of the Single Layer
2.1 Tension and compression behaviors in the fiber direction

These behaviors are different. To get the compression one, we use a four-point bending test descri-

bed in Vittecoq 1990. The main result is that the behavior is purely elastic but non-linear. The com-

pression modulus can be written:

hE.s a c t an the 1>p a

where ot is a material contant and < >+ the positive part.
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2.2 Damage kinematics

The identification and the modeling of the single layer is made with the assumption of in-plane

stresses. In what follows subscript 1, 2 and 3 designate respectively the fiber direction, the transverse

dirction inside the layer, and the normal direction.

Aside brittle fractures in the fiber direction, the matrix and the fiber-matrix interfaces inside the layer

are deteriorated in a very particular manner ; the microcracks are parallel to the fiber direction. A ho-

mogenization calculation shows that the only moduli which are modified are the transverse modulus
E2 and the shear modulus G12. The other independent elastic characteristics EI and v12 remain cons-

tant. These properties are confirmed by experimental observations.

The undamaged material strain energy, is written in the following form, reached by splitting up the

energy into "tension" energy and "compression" energy:

1 <,11>2 (<-O>+) v 2v < < 2 2

ED 2 - +F
+ 1  

2  E G12

Wherep is a material function defined such that -il (see 2.1)

0
The transverse rigidity in compression being supposed equal to E2, one obtains the following energy

for the damaged material :

1<,U1>
2  (<o,>+) V2 v2  <o0 <-o >2. 2+ =-A + 21-" + _12+

d, d' are two scalar internal variables which are constant within the thickness. They define the da-
mage of the single layer. The conjugate variables associated with the mechanical dissipation are:

a W I << ( 2>>
~~dcP 1 G 12.)

a <ci>> a Iff<(F2 +2
ad' I.C(ad'

Yd'= - P--'--d <B> :0 2( d)

"j is the free energy and << >> denotes the mean value within the thickness. E is the effective stress

tensor; we will see its expression later.

2.2 Damage evolution law
For static loadings, we have:

d It -Ad (Yd 1,, Yd, 1, 'C!t); 4d1t =Ad,(Yd 1,, Yd' It v <t)

where the operators Ad, AC ae material characteristics.

[ . . - , 'r '-.
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Let us define:

Yd = supI[ 1 Yd and Xd, = sup I,,5 Yd.

A simple law satisfied for carbon-expoy materials is defined:

d = y-I <(Xd + b r)I2- Y02>+ ifd<l ;d =I otherwise
c

& = b'd if d'< and Yd' < Yc' ;d' = otherwise

Y0, Yc, Yc, b are damage characteristic constants of the material. In practice, damages equal to I are

rarely encounterod: rupture appears far below that value and is associated with instability. Hence Xd
and .Xd' appear as the quantities which govern the damage increasing and then the transverse fracture

of the single layer.

Two different damage mechanisms are introduced (see Le Dantec 1989). The first one is a progres-
sive damage mode related to the micro-cracldng of the matrix and the deterioration of the fiber-matrix
interfaces. The second mode is a brittle one ; it concerns the deterioration of the fiber-matrix
interfaces submitted to a transverse tension stress a22.

An important variant of the previous damage evolution law is:

(Yd + bYd')1/2 
- ylfl (d) n

a=k < y, >+ ifd < I ; d = I otherwise

with yI/2(d)=Yo/2 +Yc/ 2 d
y d.1/2 -yc 112 n'

!d' = bai + k' < yc2 >+ ifd < I ; d' = I otherwise

whee n, n', k, k are material parameters. These modelings introduce delay effects ; they differ from

the previous one only if the damage rates are very high.

Remark : In order to simplify the general case where out-plane stresses are present, Young's modulus
E3, the shear modulus G13 and G23 remain constant and thus damage effects of out-plane stresses are

included in the interface behavior only.

2.3 Damage-plasticity (or viscoplasticity) coupling

The microcracking of matrix and the deterioration of fiber-matrix interfaces lead to sliding with

friction and then to anelastic strains. A way to modelize these phenomena is to use plasticity or visco-
plasticity mechanical modeling.

The idea which seems to work quite well is to build the modeling upon quantities which are called

.effective" :

- effective Sare

- effective anelastic strain rate

which verify: Tr [ap1 =TT a iG2

- ,-%:.,.
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We define for this family of composites:

G12 -(I - d') a'22=(I - d') 6 11 =a111

From a homogenization calculation, and assuming that only the matrix has an anelastic behavior, we
have efl=0.Th1kelastic domain is defined by:

Te f( 12 +a 012 -R -RD

-ehardening is assumed to be isotropic, which means that the threshold R is a function of the

cumulated strain p ;p -* R(p) is a characteristic function of the material. The yield conditions are
written as follows:

1I2 =YPR + RO =a2P R+ R 2t ( )

An example of such a hardening curve is given, for T300-914 material, in figure 2.

160.

140..
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100.
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E=WA: + EuaW3: XP%
EsaMC: D EumaD: 0 EssniE: a

Figure 2: Hardening curve for 1300-914
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2.4 Identification and checking
The modeling described above, aside the initial elastic constants, depends on:

- the rupture tension and compression strains in the direction of the fibers cT, e, and the

compression coefficient a
- the hardening curve p -+ R + R(p) and the constant a
- the b, Y0 , Y, Y,' constants which define the damage evolution laws.

The model has been identified for several laminates, in particular the T300-914 and IM6-914. cc and

ec are determined through a bending test. For the damage modeling the main test is a tensile test on a
[+45,-4512, specimen. A complementary test, for example on a J+67.5,-61.512, specimen is used to

identify the constants a2 and b which precise the coupling between the shear stress and the tansverse
stress.

This modeling has been checked out on several experimental tests:
[0,90]2 s, 101g, [451g, [±i 4512,, [±t 67.512, [67.5,22.512s, [-12,7812s, [±i 22.512,, [+ 1012s

For the last two tests, the delamination seems to be important, then the rupture experimental values

are lower than those given by our modeling. This fact is not surprising because delamination is con-
nected with the interlaminar interface deterioration. Such a damage mode is taken into account thanks

to the interface modeling (see 4).

..0
_700.

_600

400

300.

..020 -.015 -.010 -.005 0.0 005 0.010

MATIFE l -2.+SIMS MI14 oVOrrm C

Ye. 0.378 .01 Yo- 0240E-00 0: MPa

YpO..4"E.01 Y J.0.700E.00 b,,0.176E+01 t

Aft 0100E.02 a. 0.370E.0 16 0.S30E.03 a 2* 0.3800E+00 .. : imi
.... : -mulIaI,8

Figure 3: Verification on a [+ 22.512, test for IM6-914 material

A-+, - ,., l' : ' +.l +
-. 0 - ++e J .
+ ' .... -+ : . .... . +... .+ +'+- .+?+X.
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3 - Analysis of some simple laminate structures
3.1 Tension test on [90,012s specimen

Figure 4: [90,012. specimen

We note:

- *: longitudinal strain (x direction)
-* : longitudinal mean stress (x direction)
- o, 0 : stress -strain related to the ply with fibers in the x direction
-o90, e : stress - strain related to the ply with fibers in the y direction

Subscripts I and 2 denote respectively the fiber and transverse directions of each ply.
The damage modeling gives for the transverse stresses:

0

and Y =0Y#- 2

Y0 0 ; yT 1E2 E-2
2

Aside fiber rupture, two damage mechanisms are present. For both 0' ply and 900 ply, a degradation
of matrix and fiber-matrix interface appears, which can be the main phenomena for fatigue loading.
For static loading the most important degradation is related to the 90* ply; for certain values of the
damage material constant Yc' this mode is the first rupture mode.

3.2 Tension test on [+45,-45128 specimen

Figure 5 : [+45, -45]: speci m.-

e*, a* denote respectively the longitudinal strain and the longitudinal mean stress. The stresses for a

ply ame:
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0F*
(011= C012 = CF2 =T

The anelastic strains veify:

'pf2= P 1- d
~- 12 1 d'

where the constant a2 is equal to 0.38 for T300-914 and 1M6-914. Then:

a21 -d2p

The damage variable d reaches large values around 0.6 - 0.7. Temaximum value is associated to an

instability phenomenon. Around this critical point, one has:

L EP and £ 2 ClE 2 C

Moreover:

R(p) + R%= -1+a 2  0F ,2

2 (1 - d) (e* - F12)

d =< (i.bd) 4 ld)I2YoI2>+/Yc1/2 d'= bd

4 -Interface modeling
4.1 Interface definition

ardnted y

[)1UY],~+U 2 ~+W~

pl
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The (1, i2) axes are associated with the bisectrix of the fiber directions. The undamaged energy of

the interface is:

o2 02 02
ED = Iti + kO[U 1

2 +' kQfU 2]
2  -~+-

kO, k?, ki are initial elastic characteristics.

4.2 Kinematics and evolution of the damages

The deterioration of the interface can be described by:

2 2 2 2
1 <'033>2  <'O33>2  d2) 2ED = [--kU-' + Vj I'--d') + k2(F I

The conjugate variables associated with the dissipation are:

2 2 2
1 <33>+

Yd ~1 Cd)2y Ydl u1.~ Yd2 =~i 2 )

A simple modeling is to consider that the damage evolution is governed by:

IY=su SUP I g d +-71 YdI + T2 Yd2)

where y1 , y2 are coupling constants. In term of delamination modes, the first term is associated with

the first opening mode, the other two with the second and third modes. The damage evolution law is

defined through a material function w, such that:

d =w(o if d<1 ; d = I otherwise
d 1 =yjw(D ifdl<l ; di = otherwise

d2 =,n wQ) if d2 <1 ; d2 = I otherwise

A variant with delay effect can also be introduced. An anelastic response can be taken into account by
introducing an anelastic part of the displacement discontinuities: [U]P; [U2]p

Let us consider the following effective quantities:

[U'IP=[u]i(1.-dj) ; [T2P = IU2P (I-d2)

'~ 1 3 -d

We build a plasticity like model upon effective quantities:

f(, 2 ,f, R) = C F1 2+ a4 2 3 - R(p) , 0
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where at, a2 are two material constants and R the "hardening" curve. Then, we have:

2 2
Vii _ aIU2_ 'L202 ad 0Z

Sa2  ad

5 -A First Analysis of delamination

Let us consider a DCB specimen constituted with two elastic layers loaded with a pure mode I

solicitation.

Figure 7 : DCB specimen

The layers are connected with an interface F, whose elastic damageable behavior is defined by:

w(d) =

where Yc is a material constant. The delaminated area length is a. Figure 8 gives the computed energy

release rate as a function of a; for a >> h it remains constant. Then, Fracture Mechanics appears as a
simplified tool for the delamination study in the case of an established front of elastic layers.
Moreover the previous results enable us to identify behaviors of different materials from experimental
results. Such an approach is made with the assumption of elastic layers, thus it can be a first approach

only.
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Figure 8 Figure 9

Figure 10

Figure 8: Values of the computed energy release rate with damage modeling (large a)
Figure 9: Value of the load with respect to an increasing displacement (initiation case)
Figure 10: Value of the load with respect to the crack length a
Starting from a = 0, the load reaches a maximum value which can be associated to the delamination
initiation.

6 -Rupture Computation
The rupture phenomenon happens after two phases. In a first step, the micro-voids and micro-

cracks growth is nearly uniform : it is the initiation stage. From the critical point (or from a point just
beside) the strain and also the damages become more and more localized; a macrocrack appears and
grows until becoming instable. If the first stage is well described thanks to this damage approach, the
full simulation of the rupture leads to severe difficulties. The goal is to build up a true Rupture Theory
for composites laminates.
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Figuri* 11II Mesh sensivity observed in the computadon of a damaged structure
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Figure 11 explains these difficulties in the case of a concrete structure. It has been obtained by

Saouridis 1988. The mesh dependence is very important during the second stage of the rupture pro-

cess (after the critical point). The load-displacement curves are very different for the three meshes. It

is also the case for the three totally damage areas which simulate the crack. This surprising result

exists also for other instabilities such as localized necking.

Thus a problem is : how to follow a post critical solution independently of the element size ? An ans-

wer is given by the localization limiter concept introduced in Saouridis 1988, Bazant and Pijaudier-

Cabot 1987, Belytschko and Lasry 1988. It is a regularization procedure ; the additional terms are

built up from a second gradient approach or from a non local approach. Delay terms can also be

introduced. To go further in the understanding of these difficulties, let us consider an exact solution.

Pure tension analysis of a composite plate:

The fibers are supposed to be perpendicular to the loading direction (see figure 12). From the

critical point, numerous different solutions can occur. It is a non-denombrable family parametered by

the length of the localization zone.

-0--* h

F

U

Figure 12: Tension test for a [90]s specimen

>2* This example shows that the theoretical post-critical solution are much more numerous than in the

reality. Something homogeneous to a length is missing. For laminate composites, these difficulties

partially vanish:

- for the interface modeling

- for the single layer modeling if one prescribes constant damages through the thickness. To

avoid them completely one can use damage modeling with delay effects.
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Let us consider the computation of a laminate structure with an initially circular hole. This delamina-
don problem tales into account all the different damage mechanisms described previously. It is a non-
linear uee-dimensional problem which has been achieved in Allix 1988, who introduced a semi-
analytical computational method. The whole problem is about 100000 degrees of freedom. Several
results are given further for a [0,90]s laminate loaded in pure mode L A normal displacement is pres-

cribed on the edge of the hole (radius ro) under the following form U(r0, t) = X(t) U0 where X(t)=tJT.

Figure 13 shows the strain energy divided by X, with respect to .. Through a global instability
condition, this curve allows to predict the delamination initiation and the Gauss point at which it
happens. Figure 13 also shows the evolution of the peeling stress at this Gauss point.

10, .1
I R a.NPa

30. so
70

20. 60

40
10- 30

20
10 Tm

20 • .2
.0s 't0 .15 .20

Figure 13: Delamination analysis for a [0,90] s laminate with a hole

7 - Conclusion
This Damage Mechanics Approach seems to be a powerful tool for the prediction of delamination

and more generally for the prediction of complex structures deterioration. The use of damage meso-
modeling avoids the main computational difficulties. Further research is of course necessary to solve

completely the computational and theoretical problems in order to achieve a true Rupture Theory.

.44
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Abstract

The stress-strain relations of hybrid reinforced plastics are

experimentally determined by subjecting filament wound tubes with

various material constitutions to axial load, torsion and internal

pressure. The testing materials are hybrid reinforced plastics of two

combination from glass fiber, carbon fiber, and aramid fiber reinforced

plastics. The stress-strain curves of constituent reinforced plastics

are formulated by using the third order equations of stress components.

The stress-strain relations of hybrid reinforced plastics are derived

from the relations of constituent reinforced plastics on the assumption

of perfect bonding between two layers of the constituent reinforced

plastics. The stress-strain curves calculated by obtained relations

represent the characteristic behavior of experimental curves under

combined stress states as well as uniaxial stress state.

1 Introduction

Fiber reinforced plastics have the advantage of changing mechanical

properties by the material constitutions. Rational material design is

possible by use of the variable properties. Hybrid fiber reinforced

plastics give wide possibility of material design for tailoring

structural components by combining different fiber reinforced plastics.

The constitutive relations are necessary for the material design

process.

There are several papers on the deformation of hybrid reinforced

plastics. The elastic constants are derived by Sokolov et al.(1979),

Ishikawa et al.(1982) and Maksimov et al.(1982). The tensile behavior

is examined by Aveston et al.(1976) and Amagi et al.(1985). Wagner et

al.(1982) and Nagai et al.(1984) investigate the bending properties.

Furue et al.(1986) conduct creep experiments. But there are few papers
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on the stress-strain relations of hybrid reinforced plastics under

combined stress states which are necessary for stress analysis of hybrid

reinforced components. In this paper, the stress-strain relations of

hybrid reinforced plastics experimentally examined under combined stress

state as well as uniaxial stress state and the relations are formulated

from the macroscopic point of view.

2 Experimental Procedure

The specimens used in the experiments are thin-walled tubes which are

fabricated by the filament winding method. The impregnated continuous

fibers are passed through a vacuum chamber to reduce voids. The fibers

are glass(E-glass), carbon(Torayca T300), and aramid(Kevlar T968). The

matrix is epoxy resin(Epikote 828). The hardener system consists of a

BF -monoethylamine complex.
3

The specimen has two layers of different fiber reinforcement in

the radial direction. The inner layer is carbon fiber reinforced

plastics(CFRP) and the outer layer is glass fiber reinforced

plastics(GFRP) or aramid fiber reinforced plastics(AFRP). The two

layers are moulded to the same thickness. The inner layer of the

specimen is conditioned for 16 hours at room temperature and then the

outer layer is wound on the surface of the inner layer. The specimen is

cured at 125 centigrade for 2.5 hours and then at 150 centigrade for 2

hours.

The dimensions of the tubular specimen are given in Fig. 1. The

length of the parallel part is about 50mm. The inner diameter(D ) is

30.1mm and the outer diameter is about 1.3mm for the combination of CFRP

and AFRP, and 1.6mm for the combination of CFRP and GFRP. The gripped

part of the specimen is reinforced with glass fiber. The ply angles of

fiber are 90 degrees to the axial direction(x) of the specimen in the

inner layer, and 90, 61 and 50 degrees to the circumferential

Carbon I Glass. Aramid

170/

GaFs

.Figure 1. Configuration and dimensions of the 6pec"'~r
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direction(y) of the specimen in the outer layer. The fiber volume

fraction of the specimens is about 50% in both layers.

The tubular specimens are subjected to axial load, torsion and
internal pressure by the combined stress testing machine. The
deformation and failure behavior of the specimens is examined under

various stress states.

G4 
Sn .. 094Xin0 (Mpar,

-40 St, 15.789 X I0" (4P)'

0 -0.4 -0.8 -1*2 -1.6
E-z %.

(a) Compression

60-

~40

Sam a 2.570 X 10" (MPO)'3

(b) Torsion

Figure 2. Uniaxial stress-strain curves in transverse directions of

CFRP
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3 Constitutive Relations of UnidirectionalD" Reinforced Plastics

Fiber reinforced plastics have the non-linearity ii' their stress-strain

relations depending on material constitutions and fiber orientations.

Figures 2 to 4 show several examples of non-linear behavior for

compression and shear in the direction transverse to fibers of GFRP,

CFRP and AFRP. The experiments are conducted by subjecting

circumferentially reinforced tubes to internal pressure, compressive

-So-

a.

-40-

-20 ____ _____ ____ ____

0 -0.5 -1.0 -1.5 -2.0 E2 1

(a) Compression

20- 
Ww..011'MOO

56vA4 .3 '697x10
4g MPO'3

0 1.0 2.0 3.0 4.0 'ig

(b) Torsion

Figure 3. Uniaxial stress-strain curves in transverse directions of

AFRP

44
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load and torsional load. The stress-strain curves in fibers direction

and transverse direction to fibers are experimentally determined by

using several specimens for one loading condition. There are two methods

of representing the non-linear stress-strain relations. One is a method

of dividing the non-linear stress strain curves to piece-linearwise and

the other is a method of using polynomial equations between stress and

strain components. For the convenience of ease applications, the non-

linear stress-strain curves with respect to the principal axis of

anisotropy, denoted as the axes I and 2, are represented by the third

order polynomial equations of stress components as follows.

0

00

S12 =-12104011(M10a-

-5C S22 A9S48XIOAMP-')-
522,=1.361 x1-9(MPa' 3 )

0 -0.5 -1.0 -1.5 -2.0
eE2 1.

(a) Compression

26 =2.199x10 "4 (MPa 1 1)
S6666= 4.172xIO1 (MPo 3)

•0 0.75 1.50 2.25 3.00

Y12 %

(b) Torsion

Figure 4. Uniaxial stress-strain curves in transverse directions of

GFRP
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3
E S S 0 a 0 0 0
1 11 12 1 1

3l= S S 0 + 0 S 0 0 (1)
2 12 22 2 2222 2

3y2 0 0 S t 00 S
12 66 12 6666 J 12 1

The equation contains the non-linear terms of the stress components in

compressive deformation as well as shear deformation. The stress-strain

relations of Eq. (1) fit to the experimental stress-strain relations.

Table I gives the values of the coefficient in Eq. (1) which are

determined by fitting the experimental curves. The curves in Figs. 2 to

4 are the curves calculated by use of the valu s in Table 1.

The stress-strain curves of tension and compression are symnetric

each other with respect to the origin of stress and strain plane for

CFRP, AFRP and GFRP. The same values for S and S in Eq.(1) are
22 2222

adopted for both tensile and compressive loading. The value of S for
22

GFRP is larger than those for CFRP and AFRP. The values of S and S
22 66

for GFRP are similar to those for CFRP. The magnitude of the compliance

S depends on the elastic moduli of the fibers as well as the anisotropic

properties of the fibers.

The non-linearity of the stress-strain curves is compared by use

of the ratkos of S 2222/S22 and S 6666/S 66. The degree of the non-

linearity of the stress-strain curves in the direction transverse to the

fibers is more remarkable in shear loading than in tensile or

compressive loading. The ratio of the non-linearity in shear loading is

approximately evaluated as 2 : I : 3 for CFRP, AFRP and GFRP.

The inversed equation of the stress component E is obtained from2
Eq.(1) as follows.

Table 1. Coefficients of the stress-strain relations

CFRP A FRP GFRP DIMENSION

S11 8.197x0 "6 1.498x10 "5 2.784x10 "5  MPa - I

512 -3.258x10- 6 -5.068x10 6 -1.210x10-5 MPQ-a

S22 .04x10'l 2.121x0 4 9.948xO 5  MPr "'

S66 1.818x0-4 4.801x10 2,199x10' MPG-'

52222 5.739x010 5.430x10"9 1.361x10 "9  MPa-3

5.666 Z.570x10- 3.697x10-8 4.172x10- MPr-3

*z _jY t
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e = (S 1S )E +[(S S2_s )/S ]o + a (2)
1 1 1 1122 12 11 2 2222 2

From Eq.(2) the stress component a is represented by the strain
2

components as follows,

a =[a + f(e)]e (3)
2

2where a = SII1/(SII1S 22-$S12 ),e = E -(S 12 /SlE1ad Ii tero
of the following cubic equation.

3 2 2 2 3
y + 3ay + [I/(S2222e a) + 3a )y + a -0 (4)

The relation inversed the shear strain components to the stress
components is similarly obtained as follows,

T12 = [1/S66 + g(y12)] 12 (5)

where g(y 2) is the root of the following cubic equation.

3 2 2 3y + 3/S 66y + [3/S + S 6(S )] + I/S 66= 0 (6)6666 $66 /  6666 Y12 6

The inversed equation of Eq.(1) is obtained by using Eqs.(3) and (5) as

follows.

°1 Qll Q 12 0 I

2 12 Q22 0 1 2

12 Q 66 Y 12 .

(S2/S ) 2f(e) -S 1/S f(e) 0 EI112 12 111 1
+ -(S12/S11)f(e) f(e) E (7)

S0 (Y12) L Y12 1

The strain-stress relation with respect to the coordinate x and y
which axes are rotated by the angle 0 from the principal axis of

anisotropy is obtained by transforming the stress and strain components

into the rotated cuordinate as follows.

, ,~ -7,.
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x 1 12 16 Ix

y 2 22 26 y

9- y.4 16 26 66 1Xy,
:[si ) in:2/4 -ini::sin 0

x

2 (8)
"- S 222 a(21ose s46)6 cos in ea/4

symmetric sino46/ 20

xy

~2

sy me ri L1-os16 / 26 66 - x

x' ' 11 12 1

xy xy 12 22 26 y[y 1 6 6 66 Y y.

Q' Q 'Q ' Y:

(1-cos46)/2 -(1-cos46)/2 -(sin4e)/2 EI.. x
(gC E Y 0 ) (1-cos4e)/2 (sin46)12 C (9)

x y XY

Isymmetric (1-cos4e)/2
L JXYI
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where f and g are the roots of the cubic equations (2) and (4),

respectively, which strain components are transformed into the

coordinate x and y. The values of S of Eq.(8) and Q of Eq.(9) are

determined by the transform rule of elastic constants. The values of

QiJ'are given by the following relations.

Q '=A AB, Q =
QlI, A 2 AB 22 B '2 (10)

Q RAC, Q ' - RBC, Q 6 R C,1I6 26 66

2 2 2 2
where A - sin 6 - (S I/S )cos 8, B - cos 6 - (S 2/S l)sin 6, C - sin26

R - -1/2[(S IS 1) + 1].

4 Constitutive Relations of Symmetrically Laminated Plastics

A plate which is laminated by two uniaxially reinforced laminas of the

same thickness are laminated with the ply angle a is considered. The

constitutive relations are derived on the assumption of perfect bonding

between two laminas by use of Eq.(9) as follows.

ao Q11 QI12 0 C flIQll1' f 1Q 12' f 2 Q16' C

Q Q2 0 + flQ ' fQ2' 

Y 12 22 122 226 y

T 0 0 Q symmetric fQ ' Yxyxy Q66 166 -flQ6

gl(1-cos49)/2 -g (1-cos4')/2 -g2(sin44)/2 £[I£

+ gl(1-cos4k)/2 g2(sin4k)/2 (11)

[ symmetric 1 (
l+cos4d )/2 Y xyJ

where f , f2 -1/2(f(, C, y , +a ) ± f (, C, y ,-) and
1 2 x y xy x y xy

l 1 2 = 1/2[g (e , e, y , +a ) ± g (c, , y , -). (12)
2x y xy x y xy

The strain-stress relations can be obtained by inversing Eq. (11)

for combined normal stress state and for the shear stress state. But

the inversion of Eq. (11) is difficult for general plane stress states.

Numerical calculations are necessary to determine the strain state for a

given plane stress state.

4

. ..1.

I. m i m
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5 Stress-strain relations for hybrid angle ply laminates

A hybrid reinforced plate laminated symmetrically by two different

reinforced plastics is considered. A reinforced plastics laminate with

angle aI is laminated on the both sides of another reinforced plastics1
laminas with ply angle a . The total thickness of the laminates is t.2
The skin laminate is t and core laminate is t in thickness,

1 2

respectively. The skin laminate is divided into both sides of core

laminate in equal thickness. On the assumption of perfect bonding among

laminates, applied stresses to the laminates are transferred to the

constituent laminate according to the thickness, and the strain

components in the constituent are equal to the components of overall

laminates. Then the stress-strain relations for the hybrid laminates

are obtained by use of Eq. (11) as follows,

Fo E E

x x x

0 =V IQ (a)] C + V [Q (a)] C (13)
y 1 1 y 222 y

T'I' Y
t xy xy

where V tf/t and V =t/t, and Q (a )is the sum of three matrixes

of Eq. (11). It is difficult to inverse Eq. (13) with respect to the

strain components. The strain-stress relations are numerically

calculated by use of Eq. (13). The stress-strain relations for hybrid

reinforced plastics of different laminates of n kinds are similarly

obtained as follows,

x x
n

E. V.Q. (a.)] (14)
y i i { y

where V and Q are the thickness ratio and the sum of matrixes of

stress-strain relations for the constituent laminates.

The experimental stress-strain curves of CFRP/GFRP and CFRP/AFRP

for tensile and shear loading are compared with the curves calculated by

Eq. (13) in Figs. 5 to 8. The suffixes x and y indicate the axial and

circumferential directions of tubular specimens, respectively. The

fiber directions of CFRP, GFRP and AFRP layers are indicated by the
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Figure 5. Urijaxial stress-strain curves of CFRP/AFRP
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Figure 6. Uniaxial stress-strain curves of CFRP/GFRP
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A
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Figure 7. Combined stress-strain curves of CFRP/AFRP
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suffixes C, g and a. The ai.gle 90 degrees corresponds to

circumferential direction of tubular specimens. The thickness ratio of

CFRP layer to specimen thickness is indicated by the notation V . The
c

solid and chain lines are the curves calculated with and without

nonlinear behavior, respectively. In Figs. 5(a) and 6(a) for tensile

loading, there is almost no difference between the curves with and

without nonlinear behavior, but the difference is found in Figs. 5(b)

and 6(b) for shear loading and the curves including nonlinear behavior

give better tendencies for the experimental relations.

Figures 7 and 8 are the comparison between experimental and

calculated stress-strain curves of CFRP/GFRP and CFRP/AFRP for combined

loading. The figures are illustrated by the manner similar to Figs. 5

and 6. The stress-strain curves for biaxial loading show almost linear

relations for both CFRP/GFRP and CFRP/AFRP. The calculated curves fit

for the experimental relations. The non-linear behavior is found in

the stress-strain curves for combined axial and shear loading. There is

a good agreement between the experimental and calculated curves for

CFRP/GFRP, but the calculated curves of CFRP/AFRP is slightly larger

than the experimental relations. The disagreement between the

experimental and calculated curves causes inaccuracy of fiber volume

fraction, internal stress in hybrid layers and imperfect bonding between

reinforced plastics. The effects on stress-strain relations are

difficult to be quantitatively estimated at present.

6 Conclusions

The stress-strain relations of hybrid reinforced plastics between

CFRP/GFRP and CFRP/AFRP are experimentally investigated by subjecting

thin-walled tubular specimens to combined axial load, torsion and

internal pressure. The relations are formulated by using the equations

between total stress and total strain.

1. The linear stress-strain relations for tensile and compressive

loading are found in the fiber directions of uniaxially reinforced

plastics.

2. The non-linear behavior of the stress-strain curves of uniaxially

reinforced plastics is observed in the transverse loading to the fiber

directions. The non-linearity is remarkable in the relations for

torsional loading.

3. The hybrid reinforced plastics show also non-linear stress-strain

curves when the loading is applied to the direction transverse to fibers.

N . . . . . ., i,=
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4. The stress-strain curves of uniaxially reinforced plastics are

formulated by using the third order e'uat.ons of stress components to

rcprcoQnL the non-linear behavior.

5. The constitutive relations of hybrid reinforced plastics, which are

derived from the stress-strain relations of constituent reinforced

plastics, show the characteristic behavior of the experimental stress-

strain curves.
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Predictions of the Critical Strain for Matrix
Cracking of Ceramic Matrix Composites
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ABSTRACT

The critical strain for matrix cracking of ceramic matrix composites has

been studied; emphasis is placed on the effects of the fiber/matrix debonding

length and interfacial debonding energy. Based on a modified shear-lag model,

stresses in the fiber and matrix have been found for both the bonded and debonded

regions. An energy balance approach, based upon the stress field, is then

adopted to evaluate the critical strain for matrix cracking. From the general

equation for the critical strain, close form solutions have been deduced for two

limiting cases: complete debonding and perfect bonding. Numerical solutions

ae given for the cases of nonzero debonding energy and partial fiber debonding.

The results show that the interfacial debonding energy, which has been ignored

by most of the investigators, is an important factor in determining both the

critical strain and the debonding lengt.

INTRODUCTION

Fiber-reinforced ceramic matrix composites have recently drawn

coniderable attention for their potential of high temperature applications. The

fibers dispersed in the matrix tend to prevent catasUophic failures and enhance the

S , *- .:
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toughness of the composite by providing various energy dissipation

mechanisms; one of the dominant mechanisms is matrix cracking, which occurs

at the strain lower than that for fiber failure (Chou, McCullough and Pipe,

1988). Fiber/matrix interfacial debonding and fiber sliding often accompany with

matrix cracking; both have strong influence on not only the stress-srain relation

of the composite (Kuo and Chou, 1990) but also the critical strain for matrix

cracking.

Assuming a constant interfacial stress, negligible debonding energy and

complete fiber debonding throughout the interface, Aveston, Cooper and Kelly

(ACK)(1971) gave a close form solution for the critical strain. This solution has

widely been accepted by many investigators (see Donald and McMillan, 1976;

Prewo, 1988; Kerans, Hay and Pagano, 1989; Sutcu, 1989). In their subsequent

work, Aveston and Kelly (1973) also found a close-form solution for the

prediction of matrix cracking in unidirectional composites with perfect bonding.

Budiansky, Hutchinson and Evans (1986) discussed both unbonded and

perfectly bonded cases of fiber/matrix interface for evaluating the critical stress of

matrix cracking. Although initial stresses were taken into account, they
neglected the contribution of the normal stress in the matrix, which may be

significant for composites with high modulus matrices. Marshall, Cox and

Evans (MCE) (1985) considered the problem from the fracture mechanics point

of view. A non-dimensional relation between the critical stress for matrix
cracking and the crack length was obtained. More recently McCartney modified

the MCE model by introducing a distributed traction on the crack surface to

represent the bridging fibers; a solution same as the ACK equation has been

given by McCartney (1987) for long matrix cracking; the fiber/matrix interface

energy was not considered in this investigation.

This paper adopts the composite stress fields found by Kuo and Chou

(1990) and an energy balance method to study the effect of fiber debonding length

and fiber/matrix interface energy on the critical strain for matrix cracking. The

9"
0 " . ...
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composite of silicon-carbide fiber reinforced lithium-alumino-silicate is adopted

as a model system.

STRESS DISTRIBUTIONS

To find the stress fields in a composite with matrix cracking, the fiber and

matrix are modelled as concentric cylinders with radius ro and R, respectively,

and the composite is assumed to be composed of series of unit cells (Fig.1).

The crack spacing and debonding length are denoted by L and Ld, respectively.

Thc stress fields in the fiber and matrix are evaluated through the

application of a modified shear-lag model which takes into account the

contribution of the normal stress in the matrix (Kuo and Chou, 1990). The

results are as follows.

manix crack fiber debonding

W/2 dI 2R

Fis.1 Unit cell for analysis
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(1) Bonded region: ItxI15L2-Ld

-f cosh Dx - EMVM . 2 Ldr+ Ef-
-cosh P(Lt2-Ld) [LT Vf-'c ro EcC'

am= cosh~L 5 2 Vf Ld Em E

(2) Debonded region: L/2-Ld:5Ix15Lt2

Of = -1-r 5 (14-lxi)Vf ro
Om = f 2 s(/21 2

m Vm 7 (2

where E indicates Young's modulus and V denotes volume fraction. The

subscripts f~m and c stand for fiber, matrix and composite, respectively; Ts is

the interfacial shear strength in the debonded regions; 03 is a constant defined as

(see Kno and Chou, 1990)

2 Ec 1/2 1(3

SEf (l+Vm) (In4f+ Vf - 1)J 3

where vm is the Poisson's ratio of the matrix and Ec = EfVf + EmVm.

ENERGY BALANCE APPROACH

The energies involved in creating a matrix crack (Aveston, Cooper and

Kelly, 1971) are the matrix fracture surface energy (Uc), the fiber/matrix

* debonding energy(Udj,), the work done against frictional force in fiber sliding
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(Us), the strain energy increment in the fiber(AUf), the work done by external

load(AW) and the decrease in matrix strain energy (AUm). The relationship

among the energy terms is

Uc +Udb +Us +AUf= AUm +AW (4)

* All the terms in Eq.(4) are positive. The energy terms for the unit cell with crack

* spacing L and debonding length Ld are:

Uc = Ym 2 x (R2 -_r02 ) (5)

Udb Y db 4 icro Ld (6)

Us = 's 4 xr 0 J12 (uf -um) dx (7)

2/ 1pafdx.c)2 L](8

2E Em

AW =c 7R c J 2 (ef - Emc) dx (10)

where Ym is the matrix surface energy per unit area; Ydb is the fiber/matrix

interface energy per unit area. Substituting the stress fields (Eqs.(l) and (2)) into

Eqs.(7-lO), and using Eq.(4), the following general equation for the critical strain

of matrix cracking can be obtained,

fl (LLd) emu 2 + f2(LLd) Emu = f3(LLd) (I1

where the coefficients fl, f2 and f3 are functions of L and Ld. Their explicit

expiessions ar:

L ' -- 'j
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fILO ~ E m2~ 4d- (L-2Ld)C7
2  0 Em C7Sinh ( - J

C3LdJ f2-d - Ef~ Ld
+L2d 2in AE-L))C

+ C1Ef sinh 13(L~-Ld)g. C3
2 Lj-ELd

f2(J-d = V LL)67E C6 sinh P( L-Ld)

E- ~ 24d}S~~) 
2 V

+ 6C sih iL2nh +(-2J C1 2  -& -

p4 fS.flh ~( ~ d . . 2c L d)

+ C3Cs5Ld(LLd i Ts I~d Ec
r0  Ef Vf

f3L~)= ImVm ' L - 1 -- FS '-d
+V I

;+ Tf (L-2Ld+ sinh 1(L-2Ld) C22 +LdC 42 -L(-dCC

3 ~.5Ld(ILaL Ld+Ld2)I + .m
-L 4 mVf 4 (L2Ld)C62

40 62slfh f3(L-2Ld) + LdjC8
2 _ C8C9Ld(LLd

+ LC92

4 2
whe

[C1 C2,C6,C71

[Ca4,C,LC) V2 Ts s L V ,EnhI

C3 & o 2 2Vm v.

Vf
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The elastic properties of the composite in Eq.(l 1) are treated as constants; the

lengths L and Ld are independent variables except for the limiting cases

discussed below.

LIMITING CASES

Case 1: Complete Debonding

Assume that the fiber is completely debonded and there is no energy

dissipation at debonding, i.e. Ld=X, L=2X and Udb=O, where X is the maximum

possible debonding length. By assuming that the maximum matrix stress after

matrix cracking is equal to the matrix stress in the uncracked composite, X can

be found as

x -  £mr u- (12)- 2sVf

The solution for Eq.(1 1) for this case is

= 12TSYm EfVf 1/3 (13)

( ECEm2 roVm )

Equation (13) is an approximation for the critical strain of the composite with

relatively weak interfacial strength and low interface energy and it is the same as

the solution given by Aveston, Cooper and Kelly (1971).

Cae 2: Perfect Bonding

Assume no fiber/matrix interfacial debonding and infinite crack spacing,

i.e., Ld-O and L-. The solution of the Eq.(l 1) is
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3m E= ~ { f) (14)

The above equation best describes the critical strain for the composite with

relatively strong interfacial strength.

NUMERICAL RESULTS FOR INTERUMDIATE DEBONDING LENGTHS

The material properties for the composite of silicon-carbide fibers in a

lithium-alumino-silicate glass matrix (see Budiansky, Hutchinson and Evans,

1986) are adopted for the numerical calculations.

Ef = 2WGPa vin=O0.25

Em 85 GPa ro =8.O* 106 i

Ym 4 4 .1 * 109 GPa-m Vf =OA4

ors 2* 10-3 OPa

The maximum possible debonding length, X, is evaluated from Eqs.(12) and
(13). The results represented by the ratio of X to r0 are shown in Fig.2 as a

function of rand Ydu. It can be seen that X/r0 increases with adecrease in -t
or an increase in Ydb* It should be noted that X and emu are solved

simultaneously from Eqs.(1 1) and (12) by using an iterative method. Eq.(l 3),
for complete interfacial debonding and Ydb= 0' is a special case of the present

solution.

Owce X is known, Eq.(1 1) can be solved numerically for intermediate

deodn eghie, ! dS,245:- Itis found thatonceLd is

fixed, the critical strain is generally insensitive to the crack spacing L. By using
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Is= 2* 10-3 GPa and L=-2X, the solutions for the critical strain, emu , are shown

in Fig3 for different values of Ld/X ratio and Ydb*

The lowest value of emu , for each Ydb', is of basic importance. The

ACK solution (Eq.(13)) corresponds to the case of Ld/X=l and Ydb=0 . An

important observation of Fig.3 is that the location and magnitude of the

minimum value of emu is sensitive to the value of Y'Jb. This is because the

debonded interfacial area is much larger than that of matrix cracking surface.

Figure 3 also indicates that the location of the minimum value of emu tends to

LdjX=O as Y& increases; thus, the degree of fiber debonding is reduced as T'Jb

becomes larger.

200Is(G

150 11-

0
0 0.5 1.0 1.5 2.0

1db *1 OPa.m)

Fig.2 The maximum debonding length X versus Ydb an[S

, "F
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CONCLUSIONS

(1) The fiberymatrix interfacial shear strength ts, the interface debonding

energy ydI, and the matrix surface energy *7m are the key factors in

determining the critical strain for matrix cracking.

(2) IT rtO f LWjX for the minimum value of zeu depends on the

combination of sYdb andYm; it tend to Ld/X-Os T.and Ydb

(3) it is improper to neglect the energy dissipated due to fiber/matrix

interfacial debonding in the case that the interfacial energy is

significant and the composite undergoes extensive fiber debonding.

1.0

0.8

-~0.6

01
*~ O0

0.2

0
0 0.2 0.4 0.6 0.8 1.0

Ld
x

fig.3 The critical strain for giatrix cracing verSus Ydb an Ldj.
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ABSTRACT

We present a relatively simple stress analysis of the torsion of

thin flat specimens of composite materials continuously reinforced

by fibres. Centred and non-centred torsion are considered and

analyses are given for both viscoelastic and elastic-plastic

material responses.

1. INTRODUCTION

A dominant feature of the mechanical response of any fibre-

reinforced composite material is its anisotropy, and this is

particularly true when the reinforcement consists of continuous

fibres. Even when both matrix and fibres are themselves

isotropic, the macroscopic response of the composite will be

transversely isotropic about the local fibre-direction a if there is

just one family of fibres distributed throughou: the matrix, and

*will be monoclinic or, more typically, orthotropic if there are

two such families.

Furthermore, these composites are usually manufactured so

that a relatively weak matrix with otherwise desirable properties

may be stiffened in one or two particular directions by
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introducing relatively stiff and strong reinforcing fibres in those

directions. The response of such composites is then not only

anisotropic but highly anisotropic, with the extensional modulus

in a fibre-direction being much greater than any other

extensional or shear modulus. An important, and generally

unappreciated, consequence of this high anisotropy is to make

the accurate evaluation of that particular extensional modulus

much less significant and that of the shear moduli much more

important. This is because in general such a composite will

respond to any applied tractions by taking, if possible, the 'soft'

options of shearing along and/or across the fibres rather than by

extending in the much stiffer fibre-directions.
To a theoretical stress analyst, it can seem to be a simple

matter to measure such shear moduli; in fact, very little direct

and accurate measurement of shear moduli appears to have been

reported in the literature. Most the available data have been

determined indirectly from tensile tests, by measuring the various

Poisson ratios (see Christensen 1979, for example) in axial tests

or by using 'off-axis' tests (Pagano and Halpin 1968).

Unfortunately, in the former method the shear moduli so

deduced will be subject to large relative experimental error,

whilst the resulting S-shape of the test specimens in the

'off-axis' test Implies a deformation that is far different from

the homogeneous deformation assumed for the relevant simple

stress analysis. Furthermore, in the context of any composite

that exhibits a substantial amount of creep or viscous effects, a

tensile test is impractical anyway.

For Isotropic materials such difficulties can be overcome by

means of simple torsion tests, which are usually oscillatory

(Groves 1989) for viscoelastic response or for fluid-like

behaviour (as for thermoplastics at elevated temperatures), but
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M

(a) (b)

Fig. 1. Schematic diagram of torsion test. (a) Physical
set-up; (b) plan view of specimen

need not be so. A typical torsion testing set-up is shown

schematically in Figure 1. A thin flat specimen (shown in

black) is constrained between the two parallel faces of the

machine-platens, and is subjected to either steady state

oscillatory or quasi-static torsion by applying a measured

torque M about the rotational axis of the platens. The resulting

twist or angular displacement is then measured, and the shear

modulus (or viscosity, for a fluid) deduced in an accurate and

direct manner. However, for anisotropic materials, there are at

least two important and distinct modes of shear, which can be

associated respectively with simple shearing along and transverse

to the fibres. Hence the conventional torsion test would give

insufficient data, providing information only about a specific

combination of the two relevant shear moduli or viscosities.

In this paper we describe modifications of such torsion tests

which, with the relevant analyses, can be used to determine the

moduli relevant to these two modes of shear deformation.

These moduli, denoted by L and pT, are both constant for a

IV
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linearly elastic composite, and are time-dependent functions for

viscoelastic response. Elastic-plastic behaviour is characterised

by not only fL and AT but also kL and kT, the yield stresses in

simple shear along and transverse to the fibre-direction. The

modifications involve either varying the shape of the specimen

but keeping its centre of mass on the axis of torque (centred

torsion), or altering the specimen's position and orientation

(off-centred torsion).

For ease of presentation, we first review the relevant

constitutive equations (Section 2) and then describe in Section 3

the elementary kinematics for the torsion tests to be considered.

Due to the usual elastic-viscoelastic correspondence principle

(Christensen 1979) and since plastic deformation is usually

preceded by elastic behaviour, it is convenient to then present,

in Section 4, the various analyses for elastic composites. This

is followed in Section 5 by a straightforward generalisation to

take into account linearly viscoelastic effects; viscous responses

are also considered, albeit very briefly. The final section treats

the effect of rate-independent plastic flow induced by continued

torsional loading after initial yield, for both Mises and Tresca

type functions, and concludes with a brief description of the

relevant analysis when an elastic-plastic specimen is subjected to

cyclic loading. In all sections, the analysis assumes that the

rate of loading is such that inertial effects may be neglected and

for convenience we restrict attention to composites reinforced by

a single family of fibres.

2. CoNSITUTIVE EQUATIONS

We treat the composite as an anisotropic continuum in which

the fibre-reinforcement introduces a preferred direction a (the

'fibre-direction') at every point x in the body. This direction,
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which will be associated with a large extensional modulus

(compared with the shear moduli for example), is usually

constant in the undeformed configuration, but is not necessarily

so; in general it can change with position x.

Most of the constitutive equations which are given in this

section have been derived and treated in much greater detail

elsewhere (e.g. Spencer 1972, 1983, Rogers 1987). We use

standard notation, referring all vector and tensor components to

a rectangular system of Cartesian axes with position coordinates

xi (i=1,2,3); ui and vi denote the components of displacement

and velocity respectively, and the infiniiesimal strain and

rate-of-strain components are given by

eij - G - +  , dij - j + (2.1)

The stress components are denoted by oij and the components

of fibre-direction are ai; 5 ij represents the Kroneker delta and

the usual repeated suffix summation convention is used whenever

necessary. For convenience, we also introduce

A - a a a a O a with Aij - aiaj. (2.2)

(a) Linearly elastic composites

In this case a convenient intrinsic form of the constitutive

equation is

a - (X tr e + ci tr A)1 + 2pte + 2 (IL-pT)(Ae+eA) +

+ (a tr e + 0 tr Ae)A. (2.3)

Here tr 9 and tr Ae are the traces of e and A, with

tr • - e , tr At - Ajj elj - aj aj eij

The component form of (2.3) is

aiJ - (Xekk+aakagekQ)6ij + 2ATelJ +

+ 2 (pL_.)(aakakj+ajakek) +

+ (cfkk+jakage0 .alaj (2.4)
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When the fibre-direction coincides with one of the coordinate

axes, this form reduces to the usual form of transverse isotropy.

The intrinsic form, though apparently more complicated, is

convenient in that it is independent of choice of axes, and

highlights the role of the fibre-direction. The particular form

(2.3) also distinguishes the shear moduli aLL and pT from the

other elastic constants ce, 09 and X, which can be related to the

Poisson ratios and extensional moduli of the material. If the

material is effectively incompressible, then the imposition of an

arbitrary hydrostatic pressure field produces no change in

volume, so that tr e = 0 and (2.3) reduces to

- -pl + (3A tr Ae + 2 pTe + 2 (IL-T)(Ae+eA). (2.5)

If the composite is not incompressible, but is sufficiently stiff in

the fibre-direction that a superimposed arbitrary tension in that

direction produces negligible extension ("fibre-inextensible"),

then

alajeij - tr Ae - 0

and (2.3) reduces to

- TA + XI tr e + 2fT e + 2 (ItL-ItT)(Ae+eA). (2.6)

If both approximations (incompressibility and fibre-inextensibility)

are assumed applicable, then the constitutive equation reduces to

- -p1 + TA + 2ATe + 2 (#L-AT)(Ae+eA) .  (2.7)

This very special case has been termed an 'ideal fibre-reinforced

material', and many useful solutions of stress analysis problems

have been obtained by adopting it. We also note that, in all

the special cases listed above, the terms involving the shear

moduli are unaltered.

(b) Viscoelatic and vscous responses

The constitutive equations for isothermal linear viscoelastic

materials are a simple generalisation (Rogers and Pipkin 1963)
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of those of linear elasticity, with algebraic products of moduli

and strains being replaced by convolutions of the relaxation

functions and the strain-rates. Thus a term such as 2ATe in

(2.3) - (2.7) is simply replaced by
t r-t

2p.T~d - 21 WtT(t-")d(j,r) d" - 21 -OT(t-T)de(x,-)

(2.8)

where pr~t) now represents the time-dependent relaxation

modulus associated with simple shearing transverse to the fibre-

direction. Elastic behaviour is then obviously a special case for

which the relaxation functions are constant.

Such equations are appropriate for small strain behaviour of

viscoelastic solids, in which case the "correspondence principle"

of viscoelasticity usually holds so that elastic solutions can be

readily extended to give the solutions to the equivalent problem

in viscoelasticity. The reaction terms involving p and T are

unaffected, apart from being dependent on the time t as well as

on x.

The special case of an anisotropic viscous fluid is given by

letting the relaxation functions be impulse functions, so that, for

example,

AT(t) - 7TS(t) L(t) - 17L(t) (2.9)

where 6(t) is the Dirac delta function and 'qT,1L are the

appropriate viscosities. Thus an incompressible transversely

isotropic fluid may be characterised by (cf.(2.5))

Q - -pl + 2nTd + 2(nL-nT)(Ad+dA ) + nEA tr Ad.

(2.10)

This equation is appropriate for a fibre-reinforced linear viscous

fluid, with the extensional viscosity measure -qF much larger than

the shear viscosities iqT and 1L" Such a response could be
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expected for a composite comprising a Newtonian fluid matrix

reinforced by aligned chopped strand fibres. If, however, the

reinforcement were to consist of continuous 'long' filaments then

an appropriate model is the elastic fibre-reinforced viscous fluid

in which the extensional behaviour in the fibre-direction is

linearly elastic but the shear behaviour is viscous. The

constitutive equation for the linearly viscous case is then, from

(2.5),

q - -p1 + 2VTd + 2(nL-1T)(A+dM) + 0A tr Ae. (2.11)

We note that although both of these fluids (described by (2.10)

and (2.11)) have different extensional responses in the fibre-

direction, in each case the idealised limit of inextensibility in

that direction yields the same constitutive equation:

Q - -p1 + TA + 2nT + 2(nL-nT)(A+d ) , (2.12)

termed the 'ideal fibre-reinforced linearly viscous fluid'. We

also note that despite being linear, all three equations

(2.10)-(2.12) describe non-Newtonian responses, being highly

anisotropic.

For completeness we note that the generalisation of

equation (2.12) to include nonlinear effects is the ideal fibre-

reinforced fluid, analogous to the 'purely viscous' non-Newtonian

isotropic fluid. It can be shown - by comparison with plasticity

theory (Spencer 1983, Rogers 1987), for instance - that the

most general relevant constitutive equation for such an

incompressible, fibre-inextensible fluid can be written in the

form

- -pj + TA + s , (2.13)

where the extra-stress s is given by

s - V14 + 'P200+0) + 9 3dAd + 'oP(-Ad2+dA). (2.14)

Here ( 1 .... 4 are functions of the strain-rate invariants
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D, - jtr d 2 
- tr Ad2 , D 2 - tr Ad2 , D- tr d3

(2.15)

A further simple generalisation to allow linear elastic extensibility

in the fibre-direction gives

a - -pl + s(d,a) + EA tr Ae (2.16)

It is elementary to confirm that the linear case (2.12) is

recovered by making pj and 'P2 constant with 0 3 and 94 both

zero.

(c) Plastic and elastic-plastic behaviour

Most permanent plastic deformation associated with composites is

found in those with a metal matrix. Accordingly we consider a

rate-independent plasticity theory which, as in metal plasticity,

postulates the existence of a yield criterion and an associated

flow rule. We assume that a scalar yield function f(q) exists,

such that

f() 4 1 . (2.17)

If f < 1, or if f = I and the material time derivative

Df/Dt < 0, then the deformation is elastic; if f = 1 and

Df/Dt = 0, the material is being plastically deformed. The

associated flow rule determines the plastic strain-rate

dP (= d-4e) as

0 elastic statep, (2.18)di j 8f/dVt plastic state

where x is a positive scalar multiplier, possibly dependent on

the history of the irreversible plastic deformation. The elastic

strain-rate d• is related to the stress-rate through the relevant

elasticity equations. As is usual in metal plasticity, we also

assume plastic incompressibility, so that

tr dP -0 .

Here, as usual, the parameter t (and "velocity" y) is not now

,7T7°
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related to 'real' time, but represents a 'plastic' time which

determines the sequence of events as the deformation develops.

For the locally transversely isotropic materials considered in

this paper, the most general smooth quadratic form of f is

fM(O) - + ii + (2.19)

Here the stress invariants J 1 . J2 and J4 are defined, for

convenience (Spencer 1972, Rogers 1987), by

J , tr s2 - tr As 2 , J2 - tr As 2, J4 -- tr Ao',

(2.20)

where s and the deviatoric stress tensor a' are given by
s - a - J(tr a -tr Aq)j + J(tr o, - 3 tr Aq_)A

a'- a - J(tr q)I . (2.21)

Choosing such a set as (2.20) emphasizes, in any analysis,

any difference of properties along and transverse to the fibres.

Thus in (2.19) kL and kT are the plasticity analogues of the

elastic moduli juL and pT, and correspond to the yield stress in

shear along and transverse to the fibre-direction a; Y denotes

the yield stress for simple tension in the fibre-direction and is

typically much larger that kL and kT. This yield function

reduces to the von Mises form for isotropic plasticity.

A piecewise smooth quadratic form that corresponds to a

generalisation of Tresca's yield function is

SJj/k,' , IJ21 < kE, IJ41, '

fT(o) - J2/k, , jj < , IJ41 4 Y (2.22)
2 2 , j 14 2 < 2

J41Y , a I <ki IJ21 kE
In both cases, Y -* corresponds to the material being

insensitive to a superposed tension in the fibre-direction. We

note that, through (2.18), this is equivalent to tr AclP = 0,

i.e. fibre-inextensibllity.

• ' " . i
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These forms are just two simple examples of possible yield

functions. More general forms, including some that include the

Bauschinger effect and dependence on hydrostatic stress, have

been proposed and discussed elsewhere (e.g. Rogers 1987).

However, comparison with experimental data (Dvorak et al.

1988; also refer Spencer 1972) on initial yield (i.e. failure data)

has shown that (2.19) and (2.22) can be excellent models for

real fibre-reinforced composites.

3. TORSION TESTING

The typical torsion test has already been described in the

Introduction. The stress analysis is very simple, and is based

on the observations that the plate specimens are thin (in the

sense that the ratio of thickness to typical length is small), that

the fibre reinforcement is unidirectional and lies in the plane of

the plate, and that the plate surfaces are constrained by

adhesion to the parallel faces of the rigid circular platens of the

testing machine. The deformation caused by the relative motion

of the two platens is then essentially pure torsion with zero

warping, apart from 'edge' effects localised to the edge of the

specimen. If no 'squeezing' takes place, so that the

displacement normal to the plane of the platens is zero, then

the displacement field for small deformations is

U, - -0x2x3, U 2 - ex1x 3 , u3 - 0 (3.1)

Here the coordinate axes are such that the x1 -x 2 plane

coincides with the mid-plane of the specimen with the x,-axis

parallel to the fibres, and the x 3 -axis is coincident with the

axis of rotation; thus a = (1,0,0). The angle 0 is the angle of

twist per unit thickness of specimen. If 9 varies with time then

the velocity field is given by

V1 - -ix 2x 3 , V2 - ixIx 3 , v3 - 0 (3.2)

L~

~ ;1
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The strain and strain-rate components are then

e1 3 - , e 2 3 - x1 , (3.3)

d1 3 " -i X2 d23 - ieXl P

with the remaining components all zero. Straightforward

substitution of (3.3) into the constitutive equations in the

previous section gives the stress components, which are all

independent of x3. The components relevant to torsion are

orl 3 and 2 3 which satisfy, through equilibrium,

&13/axl + & 2 3/ax 2 - 0 * (3.4)

The applied torque M about the x 3 -axis is

M - JJ (XIO 2 3 - X20 1 3) dA , (3.5)
S

where S denotes the lateral surface of the plate, and the stress

components take their surface values.

The distinction between centred torsion and non-centred

torsion is that in the former the mass-centre G of the plate

specimen lies at the origin 0; for off-centred torsion it is

required that 0 and G should not coincide. We further note

that the 'plate' need not consist of just one piece but can be

the sum of several pieces; thus the region S need not be simply

connected.

4. ELASTIC TORSION

For an elastic composite, substituting (3.3) into any or all of

(2.3)-(2.7) gives

al3 - -ILOX 2  a23 - /TX 1 , (4.1)

so that, from (3.5)

M - (x2,L + X2LT) dAO (4.2)
S

This is more conveniently expressed as

M (ILl1 + pTl 2)O , (4.3)
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where I and 12 are the second moments of area about the x1

and x2-axes respectively.

The moment-twist relation (4.3) shows that when II = 12,

as for the conventional circular or square test specimens, then

only data for #L+Is- can be obtained. However, it also makes

clear that if the moments of inertia are varied, then both IL

and I'T may be determined. In practice, 1, and 12 can be

altered in one of two ways - either the shape of the specimen

can be changed or its positioning can.

The most sensible shape to use is that of a rectangle in

which each edge is either parallel or perpendicular to the fibre-

direction. Such a shape is easiest to manufacture and leads to

particularly simple forms of the analysis.

For centred torsion of a plate of length 2L in the direction

of the fibres and of width 2H, equation (4.3) gives

L 2  H2

M - .LH 3 (/.L + HT /T) 0 - JLOH(/uT + L 1,L) 0  (4.4)

Hence by determining M/ 0 for various aspect ratios LJH, a plot

of 3M1(4L3He) against H 2/L 2 should then give a straight line

with slope AL and value pr. as the intercept as -/L -+ 0. The

same data could also be used to plot 3M/(4LH30) against L 2 1H'

which should also produce a straight line, but this time with

slope # and intercept pL as L/H -+ 0.

Off-centred torsion avoids the problems associated with

preparing a number of specimens of different aspect ratios; it

also has the advantage of allowing the use of the same

specimen for a number of tests. If p denotes the distance of

G from 0, with OG making an angle ci with the fibre-

direction (refer Fiv 1(b)), then we obtain (Kaprielian and

Rogers 1989)

MO - ALTI + AT 12 + (ALsin 2a + UTCOS2a)p 2S (4.5)

- ,ii..IA,-
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or equivalently
M/0 - JALT + A ,2 + J(AL+pA)P2S

- -(+L-L+ I.)p 2S cos2a. (4.6)

Here F,- and T2 are the second moments of area about the

relevant axes throughout G, not 0, and S is the surface area of

the specimen. Obviously p = 0 corresponds to centred torsion.

If a series of tests were carried out using the same shape

and off-centre position of G and simply varying the orientation

a of the specimen, then (4.6) shows that a plot of M/D against

cos 2a would again give a straight line. This time the slope

would be proportional to uL-pT and the intercept for a = J7

(on the M/0 axis) would give another independent relation

between , L and AT, from which the individual values of the

shear moduli could be calculated. Altemativ-iy (or additionally)

the orientation a could be fixed and the distance p varied.

Equation (4.5) shows that in that case a straight line fit should

be obtained from a plot of M/0 against p 2 S, with its slope and

intercept (at p=O) providing two simultaneous equations for uL

and P-. The simplest relations are provided by the

conventionally shaped specimens, such as square and circular

plates, with -I = F2 = F, say. Then (4.5), for example, with

a = 0 (i.e. with OG in the fibre-direction) gives a straight line

plot of M/ 0 against p 2S, with slope p and an intercept that is

proportional to ftL+;tT.

The unbalanced nature of off-centred torsion can sometimes

lead to experimental difficulties associated with the machine

platens ceasing to be parallel, and hence producing deformations

for which the simple analysis based on (3.1) is not valid.

These problems can be rectified by introducing one or more

balancing 'sleepers' of the same material which remain in the

same positions and orientations throughout the series of tests. It

, /'": , .77._7. :,; ' '
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is an easy matter (Kaprielian and Rogers 1989) to reinterpret

the resulting data.

If an off-centred specimen is balanced by an identical

specimen with the same orientation, then the resulting

configuration is in fact equivalent to a single centred specimen.

Varying the distance p of each of the two centres of area then

provides yet another way of changing the 'shape' but this time

without having to change the shape of each piece.

Finally we note that the stress field (4.1) will not in

general satisfy the actual edge conditions of zero traction on the

edge surfaces. In fact it is a simple matter to show that the

conditions are satisfied only in the very special case of an

elliptically-shaped specimen whose semi-axes are in the ratio of

(jLL/LT)k, a quantity that is known only after the torsion test

has been carried out! However, the resultant traction per unit

length of edge is only of order h, the plate thickness, and acts

in a direction normal to the lateral surfaces. Accordingly it is

anticipated that the assumption of pure torsion leads to an edge

effect which is negligible. Although this assertion has not been

proved rigorously, it is very similar to the assumption made for

the conventional simple shear test in which the specimen is

sheared between two parallel plates. The same comments also

apply to the viscoelastic and plastic-elastic cases treated in the

next two sections.

5. VISCOELASTIC ANALYSIS

The correspondence principle of linear viscoelasticity, or the

elastic-viscoelastic analogue, immediately leads to equation (4.3)

being replaced for viscoelastic composites by
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M(t) - 1i #L*9 + 12 Ar*O

t t

- ~I J PL(t-7)6(T) dr + 12 J PT(t-r)b(T) dT.
-00 -0O

(5.1)

For a static torsion test, in which the test specimen is

subjected to an initial twist 0 o which is then held constant,

(5.1) shows that the torque relaxes according to

M(t) - {IAL(t) + 1 21,T(t))0o . (5.2)

Comparison with (4.13) immediately shows that the subsequent

analysis and results (4.4)-(4.6) for elastic torsion still hold,

except that now ftL and p.T are time-dependent functions.

Accordingly the data obtained from static tests can be analyzed

in the same ways as those described in Section 4, though now

separate M/0 0 plots need to be made for each time point

required.

A more standard procedure for viscoelastic measurement is

the forced vibration test, in which the specimen is subjected to

a sinusoidally varying torque of frequency il and amplitude

Mo(f), and the resulting twist O(U) and phase lag 6(0) are

measured. Then by substituting

O(t) - 0 o([I)exp tilt, M(t) - M0 (Q)exp i(Ot+6) (5.3)

into (5.1), we obtain

M. exp 15 - (lI, (n) + 12 4(n)100, (5.4)

where AL and AT are the so-called complex shear moduli.

These are related to the storage moduli pL, A4 and loss moduli

,uL, /;; through

/L * + IPL OU AT + /

Hence from (5.4)

M0 cos a - (l 11LL+12p4)8 0 ,
(5.5)

M0 sin a - (1 +12, ")00

0 UL A
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and comparison of (5.5) with the form of (4.3) again shows

how the methods described in the previous sections may be used

to analyse the data. Thus M is replaced by M 0 cos 6 for

determining a and p4 and by M 0 sin 6 for "4 and p, and

the relevant plots are made for each required frequency (I.

The special case of a fibre-reinforced linearly viscous fluid

is analyzed by substituting (2.9) into (5.1), so that in this case

M - (lI n+I 2nT)b' (5.6)

Then in the forced vibration test the torque and twist will be

exactly out of phase (6 = Jv) and

Mo/0 o - (Il IL+I 2nT)fl . (5.7)

The data can clearly be analyzed as before, for both centred

and non-centred torsion tests.

The case of a nonlinear fibre-reinforced viscous fluid is

much more complicated. Substituting (3.3) into (2.14) and

(2.15) shows that

OI3 " -k((I+V2 )x 2e , 0,2 3 - hPIxb

where Sp, and 9 2 can be functions of the three strain-rate

invariants

Dt - x13 D2 - X 2  D3 - 0

The torque is therefore independent of the functions 9D3 and 9 4 ,

and hence the torsion test data will provide data about just (p

and P 2. If , and 'P2 are constants, then the analysis will

again go through as above, even though the constitutive relation

will still contain the nonlinear (p. and 94 terms.

Finally we note that including elastic fibre-extensibility does

not affect the torsion analysis.
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6. ELASTIC-PLASTIC TORSION

If the deformation is elastic-plastic, then as the applied torque

M increases from zero the specimen first deforms elastically

until at some point the yield function attains its critical value

(here unity). Further increase in M then results in further

increase in 0 and the plastic region gradually spreads. Hence

during loading the role of 'plastic' time can be taken by 0, so

that e = 1.

We consider only the Mises anti Tresca-typs behaviouis

characterised by f = fM and f = fT respectively. It can be

verified a posteriori that in such cases, and in the absence of

'squeezing', the only non-zero stress components are a1 3 and

U2. so that (2.20) gives
-a2 1 2

23 P 2 " J4 -0. (6.1)

So for the Mises criterion fM 4 1, yielding first occurs

when 0 = Oc , say, at the point (or points) on the boundary of

the specimen for which the elastic stresses satisfy fM = 1.

Equations (4.1), (2.19) and (6.1) show that these points satisfy

+ ac - _T1 b c kl (6.2)-ATJW AL-
C C

As 0 increases with M, so do ac and bc decrease, so that the

elastic-plastic boundary is a contracting ellipse rc described by

(6.2) with all points of the specimen inside rc still deforming

elastically and all points outside rc being plastic. In the plastic

region, denoted by SP, the stress field must satisfy the yield

condition fM = 1:

2 2
+ E2.1 - 1 , (6.3)

kt kw

together with the flow rule (2.18) which, with di d e + dP,

-Az ___________________________
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gives

2 L a13 + L a13 -- x 2  (6.4)

and
2i 1.

2 -o 2 3 
+ -LT &g2 3  x1  (6.5)

kTA

Eliminating i and integrating shows that these equations

(6.3)- (6.5) have a solution

2 2kLx 2  kTxIo,3 - - . _( __ . '23 - .x.k. 2., (6.6)

(X 2k.2+Xkj(~k2X~L)(1 TX2KL  X 1 KTX2K

provided we assume non-hardening behaviour (i.e. kL and kT

both constant). This solution can be deduced most easily by

investigating whether such a (plastic) time-independent solution is

possible. Unfortunately, the solution should also satisfy

uniqueness of traction across the elastic-plastic interface rc, and

this can be done by (6.6) only in the very special case of

k2 - - ALT. (6.7)

In general, when (6.7) is not satisfied, the analysis is much

more complicated and (6.6) is the long-time solution. The

solution can be written in terms of a stress parameter p = po)

where

or,3 - -kL sin p , a23 - kT cos so,
with

OS2so + -sn 2  kLx 2cosP - kTxlsint , (6.8)

subject to so soc when 0 = 0 c , given by

r 2 2 2 -

tan [Pc + TX L , (6.9)
kTALXI kIJ

In principle, (6.8) and (6.9) determine o, and hence a 3 and
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a2 , in terms of x7, x2 and 'time' 0. Then since the

stresses in the elastic region Se are still given by (4.1), the

total torque at any loading stage of the deformation is

determined by

M - 1 (x 2+x24L) dAl 0 +J (kTxlcospo+kLX 2Sln,) dA.
(6.10)

However, even for practical shapes such as rectangles, it is clear

that (6.10) does not offer a convenient analytical expression for

M as a function of aspect ratio, as in the elastic and

viscoelastic analyses, nor even for M in terms of 0.

The Tresca-type material fT 4 1 provides a much simpler

analysis, leading to convenient analytical expressions. In this

case, the elastic-plastic boundary Fc is a rectangle with the

elastic region confined to

1IxI 4 ac , x l 4 be (6.11)
It is now very straightforward to compute the torque, provided

care is taken to distinguish between the eight distinct parts

(Rogers 1987) of the plastic region which correspond to each of

the sides and vertices of the Tresca rectangle defined by

I ,31 - kL I 1r23 1 4 kT (6.12)

and

10231 - kT ' 4 kL (6.13)

When the specimen is a centred rectangular plate, it is an

elementary, if somewhat tedious, exercise to compute the torque.

In fact, the results for off-centred specimens are more useful

and no more complicated if the sides of the rectangle are

parallel to the fibre-direction. Thus if p is again the distance

of the centre from the ori-in with a = 0, an,* assuming for

illustration that

(p+L)ATkL > HLkT (6.14)
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an inequality that ensures that the elastic plastic boundary is at

x= ac < p+L, then Se is the region p-L < x 1 < ac and SP is

ac • x1 < p+L. The torque is easily evaluated, with M given

by (4.5) until 0 increases to

0c - kT/(p+L)ItL

when the edge x1 = p+L yields; then for 0 > Oc we obtain
M JJ ( TXI+p LX2)0 dA + (kTXl+PtLOX2) dA

Se SP
- JH2LH2L-(pL)3 kT 2 2

-iH{2LH2pL-(p-L) 3 LT}0 + 4HL2kT - J-HkT/ATO . (6.15)

This expression holds until bc decreases to H-, after which it is

easy to see that the plastic regime will consist of five different

parts. The subsequent form for M is still easy to obtain,

though more cumbersome than (6.15), and includes terms

involving kL. Hence after determining kT from (6.15) - as the

solution to a cubic, for example, since it does not involve the

unknown kL - it might be feasible to increase 0 beyond 0c and

use the data to further determine kL. However, it is clearly

preferable to simply rotate the specimen through Jv so that the

fibres are parallel to the x 2 -axis; then the analysis is as above,

but with AL and AT interchanged and kT replaced by kL.

Finally, we note that the analysis for cyclic loading of a

Tresca-type plastic-elastic composite has been reported elsewhere

(Kaprielian and Rogers 1987). The analysis for the unloading

stage is exceedingly cumbersome, but it does show that reverse

yielding takes place and that in fact the new plastic-elastic

boundary reaches the same position as it was at the end of the

loading stage (0 = 0 m, say). The subsequent re-loading part of

the cycle shows that yielding again occurs before 0 = 0 m and

that the stress field at 0 = Om is exactly as at the end of the

first loading sequence. Subsequent cycling just results in

repetition of this stress cycle.
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ABSTRACT

Inelastic deformation and damage process of Graphite/Epoxy
[-4514 laminate tubes under axial and combined axial and
torsional loadings are discussed. The inelastic deformation and
rupture properties under combined loading are discussed first.
Significant viscoplastic deformation is induced by axial loading
due to fiber rotation and matrix dominant deformation. The
compressive strength of the laminate tubes is about 15% smaller
than the tensile strength. Direction of twist has no noticeable
influence on the torsional strength of the specimens. In the case of
cyclic axial loodings, significant hysteresis loops and salient
viscoplastic deformation are induced due to matrix dominant
deformation. The negative stress ratios have marked effects on
hysteresis curves, stiffness reduction and on fatigue life. These
phenomena are attributable to the matrix dominant deformation of
laminas and the accelerated viscoplastic deformation of polymer
matrix under reversed loading. However, the fatigue strength is
governed mainly by the maximum (or minimum) stress, and is
influenced by the stress ratios. The fatigue strength under cyclic
compression is 10 - 20%1b smaller than that of cyclic tension. The
isochronos stress loci for fatigue life are also discussed.
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1. INTRODUCTION

Long fiber reinforced plastic laminates are characterized by
complicated microscopic anisotropy governed by the orientation
of fibers and plies and by salient inhomogeneous microstructures.
Particularly when the composite laminates are subjected to uniaxial
loads in the direction almost coincident with that of their fibers
under monotonic loading or tension-tension cyclic loading, they
have been observed to show excellent static and fatigue
performance. However, the composite laminates in practical
applications are usually subject to the multiaxial and cyclic loading
in various stress level; i.e., they may be subject to loads acting in
the directions deviated from those of fibers, or subjected to cyclic
loads with negative stress ratios R= /Om.

The papers which elucidated the inelastic deformation and
fatigue properties of composites under multiaxial loading are rather
limited [1-5]. Krempl and his coworkers [3,4], in particular,
performed a series of static and fatigue tests on tubular specimens
of Graphite/Epoxy and Kevlar/Epoxy composites under uniaxial and
multiaxial loadings. In the case of Graphite/Epoxy [±4 5 °]s tubes
under cyclic loading, they observed marked viscoelastic and
hysteresis behaviors as well as significant degradation of fatigue
performance, especially for negative stress ratios.

The present paper is concerned with the inelastic deformation
and the fatigue damage process of [±450]4 Graphite/Epoxy laminate
tubes under axial and combined axial and torsional loading. The
tests were performed for several combinations of multiaxial stress
ratios T/O and cyclic stress ratios R=,.(u for different stress
levels, and their effects on the evolution of hysteresis behavior,
specific energy dissipation, stiffness reduction and fatigue behavior
were discussed in detail.

2. EXPERIMENTAL PROCEDURE

2.1 Properties of Test Materials
In order to facilitate the static and fatigue tests under multiaxial

state of stress, the experiments throughout the present paper will be
performed for tubular specimens shown in Fig. 1, where inside and

-

C
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outside diameters and gauge length were 15mm, 17mm and 40mm,
respectively. The stacking sequence of the specimens is [-4514,
fabricated from prepreg Toray P3052(T300/2500). The volume
fraction of fiber is 59 percent in the prepreg. The tubular specimens
facilitate also the compression tests excluding edge effects and
buckling. Furthermore, the fiber orientation of [-t45'] is most
sensitive in inelastic deformation to external axial loading.

Preliminary tests were performed also for the specimens of
[0,9014 and [0014 to elucidate the mechanical response of the
lamina in the fiber direction and in that perpendicular to the fibers.
Fig.2 and Table 1 show the results of the tests, and represent

glass-cloh/epoxy carbon/epoxy

Prepreg TORAY P3052(T300/2500)

Fig. 1. Graphite/Epoxy Laminate Tubular Specimen.

Table 1. Mechanical Properties of Graphite/Epoxy Laminate.

[00] 180GPa I715MPa 0.93%

(0,901, 77GPa 819MPa 1.05%

1±4501 15GPa 198MPa 6.13%

ii_
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typical elastic responses of the fiber. Young's modulus of [0,90' ]

laminate is about half of [00] laminate and is slightly smaller than
the value estimated by the law of mixture. These results suggest
that contributions of the matrix to the strength of [001 specimens
may be small, and that these may have degrading effects of cross
ply lamination on the mechanical properties of the laminates, due
to stress concentration between plies with different fiber orientation.

2.2 Test Conditions
Combined axial-torsional loads were applied to the tubular

specimens of Fig. 1. Fatigue tests were performed under stress
controlled cyclic loading at the stress rate of 1OMPa/sec. Loading
conditions were characterized by means of two parameters, i.e.,
multiaxial stress ratios T/O and the cyclic stress ratios R=O3j/Om,.
Strains were measured by use of plastic strain gauges in the case of
monotonic multiaxial loading, and of a clip-on extensometer in the
case of cyclic tension-compression loading.

Stress-strain hysteresis loops were observed continuously in
the course of combined tension-compression cyclic loading. The
evolution of stiffness and the strain energy dissipation were
calculated from these hysteresis loops.

2000 MONOTONIC LOADING
1;/io = o

1500

Graphite/Epoxy
1t) 000 0 1

500 10,90"14

0
0.00 0.20 0.40 0.60 0.80 1,00

AXIAL ST1RAIN E (%)

Fig. 2. Stress-Strain Curves of Graphite/Epoxy [0]4 and [0,9014.



679

=357 M Pa 6 Tsai-Wu Criterion

00 - 300Graphite/Epoxy

Cts TO 001±45014

OC1= -357 MMP O

and6 Prpotina Stes Paths.



680

3. INELASTIC BEHAVIOR UNDER MULTIAXIAL
MONOTONIC LOADING

Monotonic loading tests on tubular specimens of [±45]4 were
performed to elucidate plastic behavior and final rupture under
combined tension and torsion. Fig. 3 shows the resulting fracture
locus. The ultimate strength in torsion T,, was independent of the
directions of twist. This is in contraqt to results of Krempl[3] et al
for Graphite/Epoxy tubes of [±4512, where the twist which would
induce compression on the fibers of outer layer show larger
torsional strength than the reversed torsion. This may be accounted
for partly by the fact that the present tubes have 8 layers and hence
the role of the outer layer may ne smaller than the specimens
employed by Krempl et al. The compressive strength O., on the

other hand, is about 15% smaller than the tensile strength Or,, and
Tsai-Wu criterion is applied. In view of ply angles of the
specimens, the reduced strength of the compression tests may be
due to the matrix dominant local buckling of the specimens.

The inelas.ic deformation of the tubular specimens under
monotonic combined tension and torsion was observed for the
stress paths entered in Fig. 3. The strain was measured by use of
plastic strain gauges. The corresponding strain paths in the E-y
space is indicated in Fig. 4. The strain paths for the proportional
loading "T/I=2 and T/O=1 are no more proportional, as observed in
this figure. The corresponding stress-strain relations for each
components, T-Y and 0-S, are shown in Fig. 5 (a) and (b).

In the case of purely axial tension T/0=0 [Fig. 5(a)], noticeable
plastic deformation starts at the stress about 25 percent of the
tensile strength. This is attributable mainly to the tilting of fibers
and the matrix dominant deformation. Though the incipient part of
the curves of T/0=l and T/0=2 almost coincide with each other,
it will be difficult to conclude any definite results concerning
plastic deformation from these figures.

For pure torsion T/0=Oo in Fig. 5 (b), on the other hand, since

the fiber direction coincides with the principal stress direction, T-
y curve is almost linear. In view of the tensile fracture strain
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0.20

!- e ;/(7=°° Graphite/Epoxy"0.15 1/45]4

;z
T/ 

l2 =1

0 . X0 • 05X : FRACTURE
V/' 0.05

0/

0 .00 -------
0.00 2.00 4.00 6.00 8.00

AXIAL STRAIN E (%)

Fig. 4. Strain Paths under Proportional Loading.

EB=0.93 % of the 00 specimens, the fracture strain y,,=0.16% might
be rather small. This may be due to the local buckling of
compressed fibers and the resulting torsional buckling of tubular
specimen. In the case of stress paths T/O=1 and T/T=2, on the
other hand, noticeable plastic deformation is observed at the stress
about 30% of the torsional strength. The reason of plastic shear
strain in these cases may be two hold; Le., the deviation of
principal stress direction from fiber direction and tilting of fibers in
laminas due to tension. This is because the rotation of fibers due to
axial strain makes the deviation of fiber direction from the principal
stress direction. Addition of slight amount of axial stress to the
specimens induces considerable plastic strain. In other words,
tension in a direction slightly different from the fiber direction
induces significant plastic deformations in the matrix.

4. CYCLIC PLASTICITY AND FATIGUE DAMAGE
UNDER CYCLIC TENSION-COMPRESSION LOADING

It has been observed that composites laminates of [±450]
stacking show salient hysteresis behavior under cyclic axial loading
for the case of R=0 and R=-1[3]. This phenomenon may be quite
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(a) Axial Component
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S400±4514
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Fig. 5. Corresponding Stress-Strain Relations.
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important because it has close relation to the microstructural change
of the composites, which in turn accounts for plastic deformation
and the damage of the material.

Thus, in order to elucidate the process of cyclic plasticity and
fatigue damage of composites, three series of cyclic tension-
compression tests were performed; i.e., four different cases of
constant stress range AG combined with four different R, a case of
constant maximum stress with four R and that of constant minimum
stress with four R.

4.1 Effect of Stress Amplitude and Stress Ratio
on Hysteresis Loops
Firstly, let us discuss the effects of stress ratio on the hysteresis

loops for constant stress amplitude AO/2=67.5MPa (i.e.,

AO/OB=0.675). The typical hysteresis loops under cyclic loading
are shown in Fig. 6 (a), (b) for stress ratios R=O and R=-0.5. In the
case of R=O [Fig. 6(a)], after the first cycle of large hysteresis, the
decrease of the width of the loop and the concurrent cyclic creep
are observed. Since the deformation of this stacking is induced
mainly in matrix laminas, the decrease of the width may be
accounted for by the strain-hardening of the matrix. After N=4000
cycles, softening of the composites starts, and leads to the final
fracture. The bulging of the hysteresis loop observed immediately
after stress reversals implies the time-dependent viscoplastic
deformation. Therefore, the tangent moduli at the unloading
branches immediately after the unloading do not give a proper
indication of the change of stiffness. Hence, the tangent moduli
will be determined in Section 4.3 at mean stress on the loading
branch of the hysteresis curves. The average fatigue life for these
tests is Nf=9000.

Fig. 6(b) shows the hysteresis loops for the case of R=-0.5, but
with the identical stress amplitude. Though the maximum stress is
2/3 of that of Fig.6(a) and the incipient hysteresis is less significant,
the strain range increases rapidly with stress cycles. The
phenomenon leads to hysteresis loops of larger size and gives the
practically identical fatigue life of Nf=9000.

The hysteresis loops at fatigue limits for various stress
amplitudes and stress ratios are given in Fig. 7(a), (b) and (c). It

. . 5.. .+-m t+ -+.-z +
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(a) Cyclic Tension
A012 = 67.5MPa (AO/Oiir(0.

67 5)
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(b) cyclic Tenlsiofl-COmpression
A(1[2 =67.5MPa (Alhom=.

67 5 )

R = -0.5, Nf = 9280 (Nf = 9000)

Fig. 6. Hysteresis Loops under Cyclic Loading.
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AO/2 = 67.5MPa I50- R 0(AO/(m=0.675) N5 =7470

R = 100 Nf=7620
N =840
Nf=857 50

-8 -6 -4

STRAIN E (%)

RR =-0.5
R=20 -100 N=9100
N =27700 NC=9280

Nf=28200

(c) AO/2 = 67.5MPa (AO/Cm=0.675)

Fig. 7. Hysteresis Loops at Fatigue Limits.

will be observed that the hysteresis loops of cyclic tension-
compression tests(i.e., R<O) show quite different loops from that of
cyclic tension or of cyclic compression (i.e., R20). Namely, in
contrast to the case of cyclic tension, the cases of cyclic tension-
compression indicate marked plastic(viscoplastic) deformation. For
smaller stress amplitude, the effects of stress ratio are less
significant, as will be observed in Fig. 7(c). The deformation in
composites in these cases is matrix dependent, and is governed
largely by the viscoplastic deformation of the matrix. It has been
observed that viscoplastic deformation in polymer is remarkably
accelerated by the reversal stressing[7,8]. Thus, this may partly
account for the salient effects of negative R.

Micrographical observations on the sections of specimens after
final fracture were performed by use of the surface microscope.
However up to now, any significant differences in the internal
defects of R>O and R<O could not be found; a number of matrix
cracks, but little interlaminar cracks and fiber breakage were
observed in either cases.

4.2 Evolution of Specific Strain Energy Dissipation
The strain energy dissipation per one cycle might be an

important me Zure of damage growth. However, as shown in

L7

L ¢
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Fig. 8(a) and (b), different trends are observed between the cases
of R.-0 and R<O. This feature is attributable again to the
interpretation of Section 4.2.

4.3 Evolution of Tangent Modulus at Mean Stress
Stiffness change has been often employed as an indication of

damage in composites. Therefore the tangent moduli at mean stress
were calculated from the hysteresis loops measured by use of clip-
on gauges for each tests. The curves of Fig. 9 represent the
evolution of tangent moduli on the loading branch of hysteresis
curves for the stress ratios of r=O, -0.5, -1 and 00. The tangent
moduli, especially those for negative R, decrease significantly from
the beginning. This is because these moduli have been detected at
the mi n stress of the hysteresis curves where the tangents decrease
quickly as observed in Figs. 7 and 8.

Similar tests for R=0, -0.5 and -1 with constant maximum
stress OmaX=120MPa and those for R=-I, -2 and 00 with constant

minimum stress 0Yn.=-120MPa were also performed. These two
sets of tests revealed similar results to each other; ie., the cases of

1.4
A(5/2 = 67.5MPa (A(/(Jn=0.675)

1 1.2

ON 1.OADING BIRANCI I
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Fig. 9. Evolution of Tangent Modulus at Mean Stress.
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R=O (OCna=120MPa) and R=OO (Crmj,=-120MPa) show gradual
decrease of tangent moduli from the beginning, while the cases of
R=-0.5 and -1 (1max=120MPa) and R=-1 and -2 (Omin=-
120MPa) show incipient drop of about 50% and subsequent
gradual decrease in the tangent moduli. However the fatigue lives
of the cases of OYni=-120MPa are much smaller than the case of

Gmax=120MPa, because of the larger possibility of local buckling
due to predominant compressive stresses. t

Since the hysteresis behavior includes the inelastic properties of
matrix, the change of tangent modulus do not necessarily a proper
indication of damage[3]. Thus, also the Young's moduli were
detected in the cases of R=0 and -1 by performing local unloading
at certain stages of cycling. These results are entered by small
circles in Fig. 10(a) and (b). Since the effect of viscoplastic
behavior of matrix has been excluded from these results, the results
of these circles will provide more rational measure of damage of
composites.

4.4 Effect of Stress Amplitude and Maximum Stress
on Fatigue Limit
The relation of stress amplitude versus number of cycles is

shown in Fig. 11(a). It will be observed that the cases of negative
stress ratios (R=-0.5 and -1) show steeper fatigue curves, which
were observed also for Kevlar/Epoxy composites[4].

Fig. 11(b), on the other hand, represents the relation between
maximum (or minimum) stresses and the fatigue life. This figure
shows that the fatigue life is correlated well by the maximum (or
minimum) stress, and is influenced by the stress ratio R. It should
be noticed that cyclic loading with stress reversal (i.e., R<0) is
more deleterious than compressive stress itself.

5. FATIGUE UNDER MULTIAXIAL STATE OF STRESS

Finally we performed fatigue tests under the proportional and
combined axial and torsional loading. Fig. 12 shows the
isochronous stress loci for the fatigue lives Nf=10 2, 104 and 10 for
stress ratio of R=O. The stresses corresponding to the specified
value of Nf were determined by the interpolation of the

;,6



691

1201-0 0

R=-0.5 R=-10 0.

~1O 00

R A 0

so 0

NUMBER OF CYCLES NC

(a) Effect of Stress Amplitude

~2O0R=O_

100R0o0-

ISO -0.5

1000'

NUB3 OR CYLS0N

0.

.0 . 4..0,1,10 0



692

400 - NF

A :102

0:10"
300- 10

Cd

~ A 101

V 200

HArJ)0

-200 -100 101020
EI ,, FR, X A. MZ -E!

-200 -100 0100 200

AXIAL STRESS (J (MPa)

Fig. 12. Isochronous Stress Loci for Fatigue Lives.

corresponding fatigue curves.
According to the micrographical observation on the section of

specimen after final fracture, a number of matrix cracks but little
internal cracks and fiber breakage were detected in the specimens
fatigued by axial loading, whereas the specimens fatigued by
torsion showed considerable fiber breakage but scarce matrix cracks
and interlaminas cracks.

6. CONCLUSIONS

The results of monotonic and cyclic loading tests on
Graphite/Epoxy [±450]4 laminate tubes under uniaxial and combined
axial and torsional loads are summarized as follows:
1. Fracture locus was described by Tsai-Wu criterion, and
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compressive strength of the laminate tubes was about 15 percent
smaller than the tensile strength. The direction of twist has no
noticeable influence on the torsional strength.
2. Except for the fiber dominant deformation of the torsional tests
T/O=o, salient plastic (viscoplastic) deformation was observed for
the stress paths of Xt/7=2, 1 and 0, both in axial and torsional
strains. Axial stress slightly deviated from the fiber direction
induces large plastic deformation in the matrix; it is attributable to
the tilting of fibers and matrix dominant deformation in laminas.
3. Cyclic axial loading induces considerable hysteresis loops. This
is significant especially for the cases of negative stress ratios R,
probably because of the acceleration in viscoplastic deformation
due to the stress reversal.
4. Since tangent moduli and specific strain energy dissipation of
hysteresis loops are related to the viscoplastic deformation of the
matrix, they do not provide an indication of material damage.
Elastic modulus determined by performing local unloading during
stress cycles may be a better measure for this purpose.
5. The fatigue life of [±45']4 laminate composites was correlated
well by the maximum (oT minimum) stress, and was influenced by
the stress ratio R. Stress reversal (negative R) in cyclic loading was
more deleterious in fatigue strength than compressive stress itself.
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ABSTRACT

Experimental and analytical techniques are employed in the present stu-
dy to investigate the influence of microstructure rearrangements on ten-
sile properties of woven glass fiber reinforced composite. One-dimen-
sional constitutive model is proposed which contains a variable reflect-
ing the influence of microdamages on macroscopic behaviour. This vari-

able is estimated by the use of stereological methods and its relation
to acoustic emission signature is enlighted.

Among the problems of material modelling probably the most important is

the evaluation of that point in the deformational process and time when

failure will occur. The failure process is the consequence of two main

mechanisms, namely, the generation of defects and their growth and coa-

lescence into macroscopic failure state. Therefore it would appear that

failure criterion should be in the form of a process equation rather

than as a limiting condition. This is particulary important for compo-

site materials where the generic factors in the component phases and on

the boundary between them nucleate micro-damages at the early stages of

the deformation. Hence, development of realistic mathematical models for

describing the deformation and failure behaviour of composites must ac-

count for deformation-induced damages.

Despite a large variety of micro-damages modes influenced by the com-

posite build up, the constituent properties as well as by interactions

among the constituents, significant progress has been made in under-

standing the microfailure mechanisms that lead to damage nucleation.

The most common formalism used in the prediction of particular damage

mode is that of fracture mechanics and/or micromechanical modelling. Al-

though adding a great deal to our understanding of various micro-damage

mechanisms, the complexity of such modelling has made its application

to practical problems of predicting composite performance rather lim-

ited. Moreover, concepts of fracture mechanics as applied at micro-level

. 4W , , ...-
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in highly inhomogeneous composite materials are subjected to some doubts

(Reifsnider, 1988). In order to be useful in practical applicationE the

micromechanical models must predict the performance of the composite on

macro-level. This is by no means a simple task if one comtemplates to

use f.exp. self-consistent scheme (Laws et al. , 1983; Dvorak et al.,

1985; Attiogbe, et al. , 1987). Since the number of micro-damages is

extremely large and their locations are mostly random it is inevitable

to treat the densely cracked material as a continuum. The damage mechan-

ics has emerged as a viable framework for continuum theories that intro-

duce damage variables reflecting the influence of density, distribution,

shape and orientation of microdefects on the macroscopic response (Tal-

reja, 1985, 1989; Kamimura, 1985, Peng et al., 1986, Shen et al.. 1986,

Weitsman, 1987 1988; Allen et al. , 1987, 1988). The damage variable,

though macroscopic quantity, reflects the influence of microstructure in

an appropriately si oothed sense, retaining the salient aspects of the

phenomenon and ignoring the less important details. This can be achieved

by defining the damage variable over a certain representative volume,

which is large enough to give details of microstructure and small enough

for allowing the treatment of damage variable as a continuous quantity.

Usually the damage variable is defined as a tensor quantity which cre-

ates the problems in experimental determination of damage variable com-

ponents. Then traditionally the general theory is limited to verifica-

tion in simple state of stress where reduced number of damage variable

components are active.

It appears also inevitable to include a time effects in the damage de-

scription since a viscoelastic deformation plays a significant role in

predicting the nonlinear and iong-term behaviours of composites (Schape-

ry, 1980. 1981, 1982, 1987), and more research should be addressed to

physical observations of damages, not only at the end-of-life, but also

at different fractions of lifetime by non-destructive measurements.

Research of this type may suggest how to relate tensor-valued damages by

scalar parameters. In view of a strong temptation to minimize the numer-

ical effort a phenomenological continuum theory which reflects in aver-

aged sense the microstructure and microstructural kinetic has a better

chance to be accepted as a design tool than a purely micromechanical

theory, particularly if one considers to implement it in a finite ele-

ment code. Further, as was remarked by Kestin et al., 1988, the descrip-

tion of damages in simplest cases must be first throughly understood

both from conceptual and experimental points of view before proceeding

to multimode damages in complex state of stress.
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In the present contribution a simple unidimensional model is proposed

for nonlinear modelling of uniaxial deformation in woven composite. The

constitutive equation is equipped with variable which reflects the

microdamage pattern and its evolution. The rucrodamage variable is

determined from microphotografic aonitoring with utilization of stereo-

logical principles. The relation of the variable to some acoustic emis-

sion parameters is discussed, as well.

WW U~AL fROCEDUEB

The material used in the present study .as woven glass fabric-polyimide

composite with plane weave fabric. Specimens were mounted on the Instron

load frame and tested at a constant strain rate both in ascending and

descending part of the loading path, while load and strain were recorded

as parametric inputs to the acoustic emission aquisition system, LOCAN-

AT6. Acoustic emission and microphotographs were employed for detection

and monitoring of damage development. Microphotographs were mainly used

for che determination of the microstructure parameter entering the

constitutive equation. In order to limit the modes of damages only one

layer of reinforced fabric with thickness 0.16 mm was used, the warp and

weft yarns being oriented at 45
° 

to the loading direction. Since the

glass content in the warp yarns was about 20% larger than in the weft

yarns, the predominant mode of damage in the form of matrix cracking

along the warp direction was observed, Fig. 1.

Fig. 1. Damage pattern at strain 8-103 ps and 32-103 us.

respectively.

L
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The acoustic emission was detected with the wide-band transducers sup-

plemented with quard censors in order to eliminate extraordinary signals

coming from gripping area.

TUB THEORETICAL NXbEL

Most polymer-based composite materials exhibit viscoelastic phenomena

under certain loading and environmental conditions. Moreover, if such

material suffer simultaneously from the development of microdefects, the

constitutive model must unify adverse concepts of fading memory charac-

teristic for viscoelastic flow and permanent memory of damages. This

statement is valid for the construction of constitutive models within

the "functional" theory framework as opposite to the internal variable

theory (Pyrz, 1989). Under the absence of intensive healing the material

"remember" the damaging influence indefinitely, so that its response to

an identical deforming influence applied at some later time may be dif-

ferent from its original response. Thus the functional form of the con-

stitutive relation must change with deformation or in other words it
must be equipped with repository for damage history, (Krempl. 1975).

This repository st.ould be estimated from the knowledge of the part

played by the microstructure of the material on its macroscopic be-

haviour. Let us assume that the stress response of a material is formal-

ly described by a nonlinear operator 3

a (t) = 3(t, D) c(t) (i)

where D represents the influence of microstructure on the current re-

sponse o(t). It is further assumed that at the beginning of the time

interval [O,t] the material is in its natural state i.e. a(O) = c(O) =

0. We divide the time interval considered into elementary parts irn-l.

rn] and denote an arbitrary intermediate time instant from this inter-

val by Tn*. The stress contribution to the material state at instant t

caused by the change of strain component AEn in the time interval

(rn-. , Tn1 is obtained by writing

Ana(r) - Rn*[t, D(t), rn*, D(7n*)]Acn (2)

where

Afn - f(rn) - E(Tn.l)

and R* is the influence function at an arbitrary instant rn* dependent

on the microstructure parameter D and the choice of the instant t, in

which the deformation is considered. The contributions of the type (2)

when added, give the approximative Stieltjes sum:
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N N
oN(t) - E Ana(1) - Z Rn* An" (3)

n-i n-i

Further, if there exists the limit of all sums of the above type inde-

pendently of the mode of dividing into partial intervals and of the

choice of intermediate points rn, when the lengths of intervals tend to

zero with increasing N, then we can write

t
N

a(t) - lim Z Rn* en - J R[t, r, D(t), D(r)] de(r). (4)
N- n-I 0

max(nl,Tnl 0

In particular, when the strain e is differentiable and has an integrable

derivative the integral (4) reduces to the Riemann integral

t

o(t) - R[t, r, D(t), D(r)) de 'r) dr. (5)
f dr
0

If it was possible to constraint D to be zero during deformation, the

material would not sustain any microstructural changes and would behave

as a viscoelastic material the stress being given by the relation

t

a(t) - Rft, r, 0, 0] dE(r) dr. (6)J dt
0

For a given strain history the stresses in (5) and (6) will generally be

different, the difference being due to the growth of the microstructurre

parameter D. Conversely, for composites with rather brittle matrix the

time and rate effects may be neglected giving rise to the equation

t

U(t) - R[D(t), D(r)] de(r) dr. (7)
J

It is appearent from equation (7) that the stress is explicitely lineary

related to the strain with nonlinearity totally resided in the micro-

structure parameter D. Thus the influence function R may be looked upon

as an operational elasticity modulus possessing softening character due

to damages. In what follows, we will identify the predominant cracks

with geometrical quantities i.e. consider them as curves distributed

over the plane of the specimen. Let us take a planar domain S of area A

which contains a set of curves B showing some preferred orientation

determined by an angle a, Fig. 2.
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Fig. 2. Estimation of length density of planar specimen.
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Fig. 3. Buffon problem for oriented segments.

An infinitesimal element of a curved line has the length dB and its

orientation is measured by an angle A to the y-axis of the coordinate

system. The grid of parallel testing lines of spacing d intersects the

field S, Fig. 3. Infinitesimal elements dB for any curved line B deviate

from preferred orientation a by an angle 0, i.e. P - a + 0. Designating

by f(6) the probability density function of P we can obtain the proba-

bility of having an intersection between the test line T and dB as an

integral over conditional probability at fixed P and the distribution

function f(P)

21r

pr(dB,T) - J pr(dp,TI)f(P)d . (8)
20

.. . m w m ~ ,, -
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The probability that dB(i) intersects T is

pr(dBTl ) dBcosp
- d (9)

thus Eq. (8) becomes

27

pr(dB,T) - T J..scos f(,)dp. (10)

0

This is the solution to the Buffon's needle problem for non-random di-

rections (Weibel, 1980). By definition number of intersections between

dB and T is one if they intersect and zero otherwise so that the ex-

pected number of intersections is equal to probability (10). The average

number E of intersections I between lines B and the testing line T is

found by integration of Eq. (10) which yields

27

E(I) - L(B) J Icospi f(P)dp (Il)

0

where /(B) is the total length of curves in S and H is the caliper dia-

meter of S in the direction normal to T, representing the space within

which T can be randomly positioned. On the other hand the average length

of the test line contained in S is

EIL(T)) - A (12)

so that rearranging Eqs. (11) and (12) we obtain the length density as

21
/(B) _ T2 E(I) f Icosfl f(f)d)_ -l (13)
A E(L(T)) J

0

The preceding development assumed that T was a random testing line. More

practical procedure for calculations is to take a grid of parallel lines

of spacing d and count the number of intersections per unit length of

the test lines.

In order to facilitate the numerical calculations of the integral in Eq.

(13) we select the grid of testing lines being perpendicular to the pre-

ferred direction, a - 0. It is immediately seen from Fig. 3 that P -

in this case and the Eq. (13) yields

21
2NT ( f Icos~l f(O)do)-I  (14)

A
0

0 
----



702

where NT is the number of intersections per unit length of testing lines

and we identify the length density with microstructure parameter D. A

probability density function f(o) must reflect a strong directionality

of curves and a good choice for f(i) is the von Mises distribution,

(Mardia, 1972)

1
( 2o(k ) exp[kcos@], (15)

where 10 is a modified Bessel function and k is the concentration para-

meter which determines the spread of the distribution; for k - 0, f(o) =

l/w and all directions for the position of dB are equally probable, but

if k - all lines become parallel to the preferred orientation.

RESULTS AND DISCUSSION

During all tensile experiments performed with constant strain rate

5.10
-5 

[,/s] the pattern of microdamages was monitored by taking micro-

photographs at predetermined time intervals. Further it was accepted

that the area of microphotographs is representative for length density

calculations under the assumption that the length density is uniformly

distributed over the specimen area at fixed strain level. Performing the

calculations according to the Eq. (14) at each selected strain level

results in the accumulated distribution for microstructure parameter D

as indicated in Fig. 4. The concentration parameter k of the von Mises

distribution was selected in a manner giving a negligible value of dis-

tribution for angles . larger than 100, as observed experimentally. The

calculation procedure and appropriate tables are contained in Batsche-

let, 1981.

0.6

0.4 -

0.2

IE,

16 32 48 64 CIPS 3

Fig. 4. Cumalative distribution of microstructure parameter D.



703

ISO

1s l

I £ i 4 s1101

Fig. 5. Stress-strain diagram and AE-hits.

The development of the damage parameter is divided into two stages. In a

primary stage the nucleation of individual microcracks of average length

corresponding to the dimension of the plane weave cell is observed and

terminates at strain es. Duriug the second stage microcracks tend to

join along the preferred direction. At the same time a number of small

surface microcracks appear in the direction perpendicular to preferred

direction. Figure 5 shows typical stress-strain diagram together with

acoustic emission hits recorded under monotonic loading. The interesting

mirroring of damage curve by the acoustic emission hits is clearly seen.

A quantitative correlation between these curves faces significant diffi-

culties due to errors introduced in the estimation of the parameter D on

the one hand and due to extraordinary AE signals coming from secondary

microcracks not included in the determination of parameter D. Neverthe-

less, AE supports the finding of the limiting strain es with good accu-

racy. It is interesting to note that also AE counts and amplitude dis-

tribution separate the damage development into two distinctive stages.

Development of the damage parameter D was fitted with the following

equation

a IIE(t)ll= , '
D - (16)

where a, b. m are constants and I designates the Lebesque norm

with the property that it takes a present value of the argument when the

argument is monotonically increasing and it is constant, keeping its

previous maximum value otherwise (Fitzgerald et al., 1973; Schapery,

1984; Pyrz, 1989). The kernel function in Eq. (5) is of the form:

I%
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R(t) - ln) exp(-rD(t)) (17)

where E, n and r are constants and r is the gamma function. The values

of constants used in calculations are listed in Table 1.

Table 1

E(GPa) k a b m n Ir

16.5 17 9.6.107 5.58.10-3  5.15 -0.27 0.25

The data in Fig. 6 are fist-cycle results. The response predicted by the

model and represented by dashed lines overestimates the experimental

data. The deviation is particularly pronounced for well developed defor-

mation. It is believed that at this stage of deformation a significant

interaction between primary and secondary microcracks takes place. AE

parameters obey the Kaiser effect for unloading - reloading cycle in

the first stage of damages development but fail to do so in the second

stage, where the material starts to emit AE signals at strains about 10%

lower than previously attained maximum. This effect is believed to be

caused by the secondary cracks which are not included in the determina-

tion of the damage parameter D.

However, it is apparent that the model qualitatively resembles the

stress-strain curve. Further improvement is possible, if the errors

involved in calculations of the damage parameter will be minimized. The

concentration parameter k should be found by a maximum likelihood esti-

mates and then goodness fit should be determined based on the micropho-

A
0 5

16 32 48 64 dP'S103

Fig. 6. Stress-strain response to a sawtooth loading.

:[
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tographs taken at different specimen sides. Measures of the damage para-

meter were obtained by a tedious manual treatment of microphotographs. A

pattern recognition tec >nique would greatly facilitate the accuracy of

the analysis. Further effort should also be directed towards a quantita-

tive identification of the damage parameter by the AE monitoring, the

area which needs extensive research using new approaches.
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Abstract
An experimental programme on diaphragm forming of thermoplastic

composite laminates has successfully demonstrated the critical deformation

mechanisms which occur during the forming stage of the process. Both single

and complex curvature parts were formed in an experimental autoclave which had

sophisticated process control facilities for the independent control of both

pressurisation and forming rates. When a 90* bend was formed into a female

mould the mechanism of interply slip was clearly demonstrated. These 900 bends

were formed from both unidirectional and cross ply layups of APC-2 and in all

cases the degree of post forming spring forward was between 1.50 and 2.50. The

factors which influence laminate buckling during the forming of complex

curvature components were shown to be ; the rate of forming, the ratio of layup

area to the forming area and the stiffness of the diaphragms. The higher forming

pressures required for the stiffer diaphragms indirectly caused severe squeeze flow

and surface ply erosion. The latter effect was alleviated by the use of a slip ply

between the laminate and the diaphragm in single curvature parts.

....



710

Introduction
The availability of high performance thermoplastic materials as

matrices for continuous-fiber reinforced composites has aroused much interest

within the composites industry over the past few years. Thermoplastics offer

improvements over thermosets in impact strength, environmental resistance,

shelf-life and the potential for substantially reduced fabrication times. The

current barrier to widespread use of continuous fiber reinforced thermoplastics is

mainly a lack of fully-developed manufacturing technology. The processes which

are currently being developed for these new composites are thermoforming(1),

tape laying(2) and filament winding(3). The most promising and exciting

variation of the thermoforming processes is diaphragm forming(4) and this

process has been developed on the principles of vacuum forming of

thermoplastic sheet. In diaphragm forming the laminate is placed between two

thin deformable diaphragms which, when clamped around the edges, maintain

biaxial tensions on the laminate during deformation, consequently restricting

laminate wrinkling and buckling.

The results presented here detail many observations of the various

mechanisms which are present when a laminate, above the melt temperature of

the matrix, is deformed into both simple and complex curvature moulds. The

autoclave used in this experimental programme allowed control of both

pressurisation and deformation rates and it was this capability which has allowed

the unique effects of the process variables on part quality to be established. The

quality aspects considered were degree of fibre buckling, thickness variation,

surface finish and conformity of pan to the shape of the mould. The continuous

fibre reinforced thermoplastics used in these experiments was carbon fibre

reinforced polyetheretherketone (APC-2), supplied by Imperial Chemical

Industries.

I
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Deformation Mechanisms
Theoretical approaches to model the sheet forming of continuous fibre

thermoplastic composites during processing must simulate the important

forming mechanisms. The dominant characteristic of such a material is the high

stiffness of the carbon fibres in comparison to that of the viscous matrix. Flow

processes that occur at the polymer melt temperature will be highly anisotropic,

due to the continuous reinforcements. Experimental studies by the authors (5,6)

and by Barnes and Cogswell (7) have shown that, in practical forming processes

such as diaphragm forming, the composite layup is essentially inextensible in

the fibre direction, with deformations being accommodated by shearing and

transverse elongational mechanisms.

Intraply Shearing Resin Percolation

*'- 00 0 0 0

Transverse Fibre / Matrix Flow

F

Intulaminar Slip Interlamlnar Rotation

Figure 1. Deformation mechanisms in diaphragm forming
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Fig.l illustrates the primary deformation mechanisms that occur during

forming of complex-curvature components. The first mechanism, intraply

shearing, is needed when a shearing strain occurs in the plane of the lamina, thus

allowing part conformity to complex curvature geometries. Fabrics, by contrast,

are usually interlocked at fibre crossover points, limiting the shear strain to the

locking angle of the urit cell. Theoretically, there is no limit to the amount of

intraply shear deformation in unidirectional laminae which can be accommodated

by this mechanism. Rheological studies of APC-2 by Cogswell (8), indicate an

initial yield stress for the intraply shearing mode, followed by an approximately

Newtonian response.

The second mechanism, resin percolation, is necessary for co;. "olidation,

but is not usually as important in the processing of fully impregnated

thermoplastic composites as it is with thermoset composites. The relatively

high thermoplastic matrix viscosity reduces significant polymer flow transverse

to, and along the length of the fibres, although small pools of resin were

observed by the authors (6) at the end of plies which were diaphragm formed over

a 90" bend. Transverse squeeze flow of matrix and fibres in a direction

perpendicular to the fibres, is a very important forming mechanism, dictating the

final thickness distribution of the formed part, as fibres and matrix flow

transversely in response to nressure gradients.

The mechanisms which are required for the forming of multi-ply

laminates are both interlaminar slip and rotation. Interply (or interlaminar)

shearing occurs when a laminate is deformed in a single-curvature manner. As

the fibres are essentially inextensible, the discrete layers are forced to slip past

one another. Cogswell (8) notes that this shearing action occurs in a thin 'resin-

rich layer' (thickneu - 10 microns) which migrates to each lamina surface during

consolidation. Ar apparent yield stress is also determined for this deformation

mode, followed by an approximate Newtonian response. Furthermore, Muzzy

(9) carried out a three-point flexural loading on a single ply at processing

temperature and discovered an initial elastic response which could correspond to

" 4 t
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this initial yield stress. In their analysis of interply slip, Tam andGutowski (10)

noted the importance of resin-rich layers at intervals through the thickness in

decreasing the forces needed to deform a stacked elastic/viscous model. Clearly,

this mechanism is essential in practical forming applications, and has been

observed by the authors microscopically in a formed 900 bend (6). The final

mechanism, interlaminar rotation, is perhaps of most importance in carrying out

a sheet forming analysis. Most complex-curvature parts require a change of

initial fibre orientation between adjacent plies.

While the analysis of the forming process has recently attracted attention,

there is still a substantial amount of work to be done before it will be possible

to accurately predict the performance of a formed complex curvature component.

The authors have recently made a significant advance in the development of a

constitutive approach to predict the stresses and deformations throughout the

process stage (11).

Experimental

Diaphragm Forming Process

The polymeric diaphragm forming process is illustrated in Fig.2 where

the double diaphragms plus a laminate are being formed into a mould within an

autoclave. The pressure system consists of two sides, the vessel pressure and the

cavity pressure. Forming is effected by applying a greater pressure in the vessel

than in the cavity, as shown in the illustration. Forming may be carried out

after consolidation, by applying equal pressures on the two sides initially and

then decreasing the cavity pressure, or it may be followed by consolidation, by

simply applying pressure only on the vessel side. Vacuum, exerted between the

diaphragms, is necessary in order to extract all air that may be present, but also

to remove any gases that may evolve during the melting and consolidation of the

matrix.

A typical processing cycle for production of a polymeric diaphragm

formed APC-2 component is shown in Fig.3, with an overall cycle time of

Ci*1

-- a mmm mmmm
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Heated Pressure Vessel

Compressed

Nitrogen

Vacuum Heater BandMol

Figure 2. Schematic of Diaphragm Forming Process In an Autoclave

Dw 11 Form Consolidate

0300-08C
0 a

200- 0.4

E Pressur

100 -I I1

01 ~ Vacuum s
00 10 20 30 40 s0 60

Time minutes

Figure 3. Typical Diaphragm Forming Process Cycle.
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about 60 minutes, provided that the autoclave has been preheated to processing

temperatu.

Description of Diaphragm Forming Apparatus

Two separate autoclaves were used during the course of this work, one

based in the University of Delaware and the other in University College Galway

(UCG). The Delaware autoclave is described in detail in reference (4) while the

autoclave based at UCG is described in reference (12) and shown in Fig.4. This

is a large experimental autoclave with internal dimensions of 0.6 metres diameter

by 1.0 metre in length. It can operate at pressures up to 2.0MPa and

temperatures up to 4000 C and is designed primarily for sheet forming of

thermoplastic composites. It is fully computer controlled and features advanced

process monitoring and control of temperature, pressure and displacement. The

pressure control system uses two pressure transducers and a simple on-off

normally closed solenoid valve, operated from the computer. This control system

allows programmed pressure profiles to be reproduced in the autoclave.

Figure 4. Diaphragm Forming Autoclave

.,' 4 il ',
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The deformation of the forming part is measured using a high temperature

Linear Variable Differential Transformer (LVDT), model LIN256, manufactured

by RDP Electronics Ltd. It is capable of the measurement of very small

displacements and is used to record the central deflection of the forming part. The

central moving core rests on top of the top diaphragm and moves downward with

the diaphragm during forming. During the forming rate control experiments the

displacement of the LVDT core was programmed from the computer and the

desired displacement rate effected by controlled pressure increase.

Results and Discussion

Interply Slip

A (O/ 9 0 )4s stack of prepreg, 200mm long by 100mm wide, was tacked

together and both ends ground until all 0* fibres were of equal length. This

prepreg stack was then diaphragm formed over a 900 bend. The part was

Figure 5. Isterlaminar Slip In a 900 Bend

• .... ,.' ,3 MIN
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subsequently cut along the 0* fibre direction and small sections taken from each

end for microscopic examination. These specimen ends were ground and polished

and a photomicrograph of one is presented in Fig.5. The interlaminar slip which

has occurred between the axial plies is quite clear and has been measured to be

approximately equal to that which would be expected from the geometric

considerations of the part. This demonstrates that the interlaminar shear forces

were insufficient to cause fiber deformation at the viscosities which occur in the

region of the melt temperature. Careful examination of the photomicrograph

also illustrates another fundamental mode of deformation, resin percolation along

the 00 fibers, causing small pools of resin at the ply ends.

Spring Forward

This is an effect which is experienced when a composite laminate above

the melt temperature of the matrix is formed into a mould and subsequently

cooled in the deformed shape, results in the final enclosed angle of the part being

generally less than that of the mould. This effect is known as spring forward and

occurs when cooling a curved laminate where there is a significant difference in

coefficients of thermal expansion of the fibres and matrix.

In the experimental programme both male and female moulds were used

to form 90 bends from APC-2 materials using unidirectional and cross-ply

layups. In ali cases the included angle of the formed part was between 1.5* and

2.50 less than the included angle of the mould. These results agree closely with

the theoretical prediction of O'Neill, Rogers and Spencer (13).

Figure 6. Channel Part Showing Spring Forward
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The spring forward effect has also been observed in a selection of parts

which include a channel as shown in Fig.6 and a cylindrical dish as shown in

Fig.7. In addition to the channel a sine wave part demonstrates that the

combination of two bends, where one in the reverse of the other, serves to cancel

the overall effect of spring forward. In the case of the sine wave part the total

spring forward of the straight end sections was approximately 20. In a complex

curvature part such as the cylindrical dish, spring forward is evidenced by the

concave nature of the top surface which was formed onto a flat mould surface.

This highlights the significance of spring forward on mould design, where in the

case of the cylindrical dish, the top surface of the mould should have been

convex if a flat top surface was required on the part. A complete analytical

prediction of spring forward for complex curvature parts is required to enable this

effect to be catered for in mould design. If the fibre orientation in the finished

part was available at all locations then the task of predicting spring forward

should not be difficult. However, the prediction of the fibre orientation in a

complex curvature part, which has been formed from a flat layup, presents a

much greater challenge and was referred to earlier under deformation mechanisms.

Figure 7. Cylindrical Dish Part Showing Spring Forward.
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Laminate Buckling

When a 228mm diameter (0 °/ 9 0 0 )4s layup was formed into each of the

hemispherical moulds, shown in Fig. 8, buckling was observed at 450 to the

fibre direction of the parts formed in the A and B moulds. This was most severe

on the A parts as shown in Fig. 9. When a similar circular lay-up 152mm.

diameter was formed no such problems existed. It therefore appears that the

buckling is caused by the excess material which remains outside the formed area,

and is related to the ratio of the lay-up area to the formed area, A1/A2. A 228

mm. circular lay-up formed into female mould A has a ratio, A1/A2 = 6.0,

whereas the 152 mm. lay-up formed into the same mould has a ratio of only

2.67. Parts C and D, also formed from a 228 mm. lay-up, show no buckling

with ratios of 2.57 and 2.0 respectively. It can be concluded that for a circular

16-ply cross-ply lay-up, formed into a female hemispherical mould, shear-

buckling will be dependent on the ratio of the layup area to the formed area.

Clamping Ring~~24.13 cm

M Nould A

.45 Mould C

Vacuum Ring Diaphragms&71 c laphfagms

Mold Sae CavlWy Vent

Figure S. Set of Hemispherical Moulds

I:A

4;r.i
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The female hemispherical mould C was used in a series of tests where the

central deflection rate was varied from 3 mim/min. to 25 mm/min. The desired

ratze for each test was programmed into the computer and the forming rate

controlled as described earlier. Upilex-R diaphragms were used to form 8 ply

quasi-isotropic layups of APC-2 at the following forming rates; 3, 6, 9, 12 and

25 mm/min. The observations of degree of buckling versus forming rate is

shown in Fig. 10 and it can be seen that the part formed at 25 mm/min. suffered

from severe out-of-plane buckling while the part formed at 3 mam/m.in, had no

out-of-plane buckling and very little surface wrinkling. From an inspection of

the other parts it was observed that the out-of-plane buckling was absent at the

forming rate of 6 mm/min. while at 12 mm/min. out-of-plane buckling was

present as shown in Fig.l la. When the layup was changed to a (0°/90)2s layup,

parts formed at 12 mm/rain. did not buckle as shown in Fig.llb.These results

demonstrate the need to consider the layup as well as part geometry in

establishing the optimum forming rate.

Figure 9. (/90)4S Hemispherical 'A' Part Showing Buckling.

,i ./
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(a) Formed at 3 mm/mmn (b) Formed at 2Smm/min.

Figure 10. (0*/.4S1-4V1/9O)S Hemispherical 'C' Parts.

(a) (0*/+45*/145 (900)S (b) (00/90)2 S

Figure 11. Hemispherical 'C' Parts Formed at 12 mm/min.

(a) Formed using Upilex.S (b) Formed using Upilex-R

Figuare 12. (00/90)2S Hemispherical 'C', Formed at 12 mm/min.

~- 77



722

It has been shown that the use of stiffer diaphragms can improve the

surface quality of diaphragm formed parts(14). Fig. 12 shows the surface quality

of two hemispherical pans formed at 12 mm/min. deformation rates but with

Upilex-R and Upilex-S diaphragm materials. The surface of the part formed

using the stiffer diaphragms, Upilex-S, has no buckling or surface wrinkles,

while the part formed using Upilex-R had a glossy surface with some wrinkles

present. This wrinkling appears to be a direct effect of the lack of tension on the

laminate during forming.

Squeeze Flow

The squeeze flow which occurs during diaphragm forming is a result of

normal pressure causing transverse fibre movement (14) and the level of normal

pressure generated is related to the diaphragm stiffness. A cylindrical dish mould

shown in Fig.13 was used to investigate this effect using Upilex-R, Upilex-S

and Supral diaphragms materials with a (0*/90)4S APC-2 laminate. Fig.14

shows sections through the cylindrical dish parts and it can be seen clearly that

the degree of squeeze flow, as evidenced by increased thickness at the lower

corner, is much more severe from the Upilex-S and Supral diaphragms as

opposed to the Upilex-R diaphragms.

Clamping Ring
240 mnm Die.

V w.uu Ra100 MM .gms

Mould Base LCavity Vent

Figure 13. Cylindrical Dish Mould

L p
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Top: UpHex-R Centre: Supral Bottom: Upllex-S

Figure 14. Cylindrical Dish Parts - Different Diaphragms.

To diaphragm form this cylindrical dish part using Upilex-R diaphragms

required an autoclave pressure less than 0.1 MPa, while a pressure of 1.7 MPa

was required to form the parts using Upilex-S and Supral diaphragms. These

higher pressures obviously exaggerate the degree of squeeze flow present.

Diaphragm / Surface Ply Interaction

When the diaphragms and laminate deform into a mould the diaphragms

undergo biaxial elongation. In the direction of the inextensible surface fibres the

diaphragm extension is restrained by the contact with the laminate and

consequently higher strain occurs in the diaphragm between the laminate end and

the clamping ring. The diaphragm stretching in the direction perpendicular to the

surface fibres is more uniform and is accommodated by transverse fibre

movement which causes severe erosion of the surface ply. This effect is clearly

shown in Fig. 15 where a model trailer was formed into a female mould. Fig. 16

shows two 900 bends where one was formed without any normal pressure and the

other formed with a normal pressure of 0.14 MPa. applied throughout the

fonning. It can be seen that the errosion of the surface ply was more severe when

additional normal pressure was applied. This effect demonstrates that the normal

prssure influences the interaction between the diaphragms and the surface ply.

,,,7" "-7,
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(0 0 )2S,

Figure 15. Model 'Trailer Showing Surface Ply Erosion

Figure 16. Effect of Normal pressure on Surface Ply Erosion.

Figure 17. Surface Ply ErosIOu Allevistd by the use or Slip plies.
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When slip plies were introduced between the diaphragms and the laminate
the transvere spreading was eliminated as shown in Fig. 17. The slip plies were

0.005" thick Upilex-R film and cut such that they were just slotly lager than

the layup and were placed above and below the layup. The function of these slip

plies was to allow slipping to take place between the diaphragms and the slip

plies and hence partially isolate the laminate from surface tension.

Conclusions
The diaphragm forming of both single and complex curvature

components clearly demonstrated the important deformation mechanisms which

occur during the forming phase. The tension imparted to the laminate by the

deforming diaphragm enabled the primary mechanism of interply slip in single

curvature parts to lake place fully.

The post forming spring forward was measured in both single and

complex curvature components and found to in the range 1.50 to 2.50.

It has been demonstrated that laminate buckling which occurs during the

forming stage is influenced by; the rate of forming, the ratio of layup area to the

formed aea and the stiffness of the diaphragms.

The squeeze flow effect in parts formed using Upilex-R diaphragms was

evidenced by a thickness variation in the parts of approximately ± 10%. When

stiffer diaphragms were used the part thickness variation increased to

approximealy ±100 % due to increased forming pressures.

The effect of surface ply erosion was greatly increased by increased

nomal prenure. This effect was alleviated by the use of slip plies.
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Viscoelastic Creep Post Buckling Behavior
of AS4/J1 Thermoplastic-Matrix Composite
Laminates

Y. Nakajo , Ashikaga Institute of Technology, Japan

1. INTRODUCTION

Above-critical behavior of AS4/Jl thermoplastic-matrix

composite laminates at elevated temperature is analyzed

taking time-dependency into consideration.

In the previous study, fundamental creep buckling

behaviors of the composite panels are investigated as time-

dependent bifurcation buckling adopting the correspondence

principle. In this study, the anisotropic time-temperature

dependent viscoelastic constitutive equations of the

composite in the previous study is used again to give

mathematical expressions for compliances and Poisson's ratio

for the analyses.

The advanced structural applications of high-performance

thermoplastic-matrix composites such as AS4/Jl require

accurate analyses and clear understanding of the above-

critical behavior as well as critical behavior as structural

elements. An elastic solution of post buckling of simply-

supported composite laminate subject to biaxial compression

is obtained in terms of end-shortening versus loads by

solving the Karman type equation assuming the displacements

in forms of products of trigonometric functions. The

viscoelastic response to a step input of the load is obtained

immediately from the time-temperature dependent constitutive

equations of the composite along with the elastic post-

buckling solution. Then viscoelastic solutions adopting the

Duhamel integral based on the Boltzmann superposition

principle is obtained for a general time-dependent load

input.. The axial loads can be any functions of time because

the integral is carried out by numerical method. In the

present study, the axial loads are assumed to be

logarithmically linear function of time as an example. The
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results clarify the load carrying capability of the composite

panels at elevated temperature in buckled conditions.

2. METHODS OF APPROACH

2.1 ELASTIC POST BUCKLING SOLUTION

Firstly, we assume that the composite laminates are

symmetric and the number of layer is large enough to cancel

the coupling between bending and twisting. The basic

equations are;

2  - + + Nr. + Nxy%, + NyKy- (2)
012 Mxy OBY2

!!N. + Ny

asly + a__. 0  (2-2)

dy ft

N.= A1* + Ayvy. Ny - Ay. + Ay', Ny - A. (2-3)
,- D.K*D +,ixc , - D,,rc. + D, Km,. D..,y (2-4)

!L0 + ,! 2 a , I , ., 2
E x + a x a ) ' " + -@ (2 -5 )

,,--- 2 - ,c.-- , --2- (2-6)

where

N., Ny, N1,,: Compressive and Shear Loads

), K,, M : Bending and Twisting Moments

U, V, W: Displacements in x, y, z directions respectively

92, , 0f: Strains

i, KY, 0K :Curvatures,

and

0S ?! . - -++ 5
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A' h''COS4 + 2F,v1 Incj V2S'C01+E 2 2nd4'+ 4j 6 0n2 OC,240
Ay- h( E' Ij+E22)SI2W400 24+ ' I v2 1(sin*'Cdy4- ) ' 4 66sin2 0CW21, ,

Ay .* 2 (2.7)
A- h [( l +E 22 -2 , v 2 )hin2 * c00240 + G66(Co56- 5"i2)2J

2
h-

where

E 11 22  " ,22
1 2v2 1

By assuming the deflection in the next form and
substituting the eqs. (2-3), (2-5), and (2-8) into the basic
equation (2-1), and solving for the displacements u and V,
the next solutions are obtained.

w. - C-,m sin Ax sin A.,,y (2-8)

where

AM ,,n. (a,b: length of plate in x,y directions respectively)
C2

v - cI - -[ A, 1 coo 2A,,,) - M A
16?t- I . n sin2Xx(2-9)

Boundary conditions for the forces

fNy- bNo at X-0, x-a

(2-10o)

SNA O at y-Oy-b

give next relations.
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C (Ay ,Nyo-A. 1 ), 2 C 2
AcA- -' "r'3on -In

(.N0- An NY0)_ 1 2 C2

.=y -V

A potential energy of the system is expressed as

n

.~ ~ [ N o ( ) + Y (2v)dy (2-12)

Rewriting the loads and strains in terms of

displacements and substituting the assumed deflections and

the displacements in the form of eq. (2-8) and adopting the

Principle of minimum potential energy, the coefficient Cmn is

determined as follows.

2_ - u2(N,,° .N. )

AM0

2.2 VISCOELASTIC PROPERTIES OF THE COMPOSITE

The viscoelastic properties of the composite laminates

can be expressed with those of unidirectional composite i.e.,

J11, J22, J66 , and V1 2 . These properties are determined

through a series of experiments in a separate study. From

the experimental data, time-temperature dependent

'i
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constitutive equations of the composite are obtained in the

form of exponential series or generalized Voigt model as

follows.

JU (Tt) - C(°) (T) + C(k)(T)exp(jk(T)t) (2-14)
k-1

n

vU(T,t) -.( 0)(T) + Y£,N) (T)exp(yk(T)t) (2-15)
k-!

where Cij, Dtj, Ik and Yk are coefficients dependent on the

temperature and fiber orientations.

In the above equations, Jjj's are compliances and Vij's are

Poisson' s ratios of the composite. To express the

experimental data of the anisotropic composite properties in

the above forms, Sequential Unconstrained Minimization

Technique (SUMT) is used. Curve fitting for a longer time
range requires the introduction of several new features in

the solution procedure, including (1) use of sufficient

number of terms, (2) introduction of additional constraint

conditions, and (3) selection of proper initial values. The

SUMT method is employed to solve the problem efficiently with

these three requirements. The procedure has demonstrated to

minimize the discrepancies between experimental data and the

exponential series solution under numerous constraint

conditions. Details of the SUMT can be found in the

reference(l). The results of the curve fitting are shown in

Figs.(2-1) to (2-3) and Tables (2-2) to (2-4) with the basic

properties of the composite at room temperature in Table (2-

1).

2.3 VISCOELASTIC CREEP POST BUCKLING SOLUTIONS

The elastic solution in the form of end shortening

versus applied load is modified to viscoelastic response to a

, '
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Table 2-1 Properties of Fiber and Matrix.

rAS4 Fiber [Ji Polymer
Tensile Strength 3.79 69.0
(GPa)_____________

Tensile Modulus 234 2.21
(GPa)_______

Tensile Failure 1.5 5
Strain M% _____ ______

Density (g/cm3) 1.01.04

Table 2-2 Various Terms in Modified Prony Series
for Composite Creep Compliance J22 at T=145 0C.

k Li2:(k) (Mpa- 1) Pk

0 440336 E-4 _______

1 -210554 E-5 -2.51442
2 j-1.66286 E-5 -1.27771
3 -1.33932 E-5 -7.36571 E-1
4 -9.76488 E-6 -3.16115 E-1
5 -8.68564 E-6 -1.56968 E-1
6 -9.74617 E-6 -8.36424 E-2
7 -1.23113 E-5 -4.53550 E-2
8 -1.48929 E-5 -2.20002 E-2
9 -1.65546 E-5 -7.45779 E-3
10 -1.72521 E-5 -6.62765 E-4
11 -1.74391 E-5 -1.06532 E-3
12 -1.77117 E-5 -1.60279 E-4

13 -1.78031 E-5 -2.86918 E-5
14 -1.78031 E-5 -2.86918 E-5
15 -1.78176 E-5 -2.86918 E-5

Table 2-3 Various Terms in Modified Prony Series
for Composite Creep Compliance J 6 6 at T=1450 C.

k C66 (k) (Mpa -1 ) 9k

0 8.78526 E-4
1 -2.90565 E-5 -2.50119
2 -2.40482 E-5 -1.27583
3 -2.10859 E-5 -7.35502 E-1
4 -1.94604 E-5 -3.15107 E-1
5 -2.18587 E-5 -1.55352 E-1
6 -2.75514 E-5 -8.06181 E-2
7 -3.52814 E-5 -3.99268 E-2
8 -4.19311 E-5 -1.45174 E-2
9 -4.48006 E-5 -3.26728 E-3
10 -4,52936 E-5 -1.37041 E-5
11 -4.53792 E-5 -5.62197 E-5
12 -4.53690 E-5 -5.62197 E-5
13 -4.53386 E-5 -5.62197 E-5
14 -4.53096 E-5 -7.79696 E-4
15 -4.53023 E-5 -1.15559 E-3
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Table 2-4 Various Terms in Modified Prony
Series for Poisson's ratio V12 at T=145 0C.

k D (k) Y
0 4.9051 E-1 ________

1 -1.0151 E-2 -2.49794
2 -6.7556 E-3 -1.27491
3 -5.3963 E-3 -7.34993 E-1
4 -3.6905 E-3 -3.14815 E-1
5 *-2.0699 E-3 -1.55492 E-1
6 -1.4857 E-3 -8.28316 E-2
7 -4.7518 E-3 -4.71662 E-2
8 -8.3283 E-3 -2.80405 E-2
9 -1.0999 E-2 -1.58641 E-2
10 -1.2835 E-2 -5.16678 E-3
11 -1.5104 E-2 -4.04642 E-5
12 1-1.5977 E-2 -3.41099 E-4
13 3-1.6218 E-2 -4.04642 E-5

*Ell is 17.5 Msi and time-independent.

0.50
Modified Prony Series
Experimental Data

o 0.45

0

0

S0.40

0.35 ___________________

10 0 10 1 10 2 10 3 10 4 10

t(sec.-)
Fig. 2-3. High-Temperature Creep gxperimental Data and the
Modified Prony Series Solution for~ AS4/JI Thermoplastic
Composite at T-145 C.
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step input of the load by directly substituting the

viscoelastic properties of the composite in eqs. (2-14) and

2-15) To extend the solution to a much generalized form

corresponding to time-dependent load input, Duhamel integral

is adopted. If a response to a step input is written in next

form,

e-4( a, t) (2-16)

then, a generalized solution for any input is expressed in

the next form using the convolution integral.

e(t)-f 0- , t - T) --d -- d 1)(2-17)

The above theory is based on Boltzmann's superposition

principle and valid for any linear materials.

3 RESULTS AND DISCUSSIONS

Figure (3-1) shows solutions in the form of end-

shortenings of the unidirectional composite panel versus

biaxially applied load with time and biaxiality as

parameters. The curves in this figure represent responses to

step load inputs. Therefore, a horizontal section at given

load in the figure shows growth of end-shortening with time

when the load is suddenly applied at t=O. The cusps in the

figure represent buckling points.

Figure (3-2) shows solutions for ±45 degree angle ply

similarly to Fig. (3-1) . In this case the composite panel

shows surpassing load bearing capability after the buckling

provided the end-shortenings are representative of the

performance although the degradation of it is much

significant affected by the shear modulus which is also time-

dependent (Fig.(2-3)).

Solutions for the unidirectional composite panel subject

to transverse loading only are shown in Fig.(3-3). The load

)K "
.:, j<:. ' ;i~ . ...

2Z; . . .. . : . -.
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bearing capability is not high because the panel is

compressed in a weak direction. Moreover, the growth of end-

shortenings drastically change with the change of buckling

mode. Thus, the mode change can happen when the transverse

compressive load is large compared to the longitudinal one.

Figure (3-4) is an example solution for general load

input which is a function of time. In this case, a

logarithmically linear load input which reaches the elastic

buckling load at t = 103 sec. ( Nx0 = (Nmn/3 )log(t) ) is

employed to demonstrate the Duhamel integral. The dotted

line represents the quasi-static solution obtained by

substituting the material properties and the load at the

instant directly into the elastic solution. The solid line

in the figure represents the solution obtained by the

convolution integral, which gives rather small displacement

than the quasi-static solution because of contribution of the

material up to the moment. The curve shows a moderate change

of slope at t = 103 sec.

4. CONCLUSION

Based on the analytical methods developed for studying

the creep postbuckling of fiber composites and the results

obtained for the AS4/Jl thermoplastic-matrix composite panels

subject to biaxial compression, the following conclusions are

made in this study.

1. In the case of angle ply, the degradation of load bearing

capability with time is significant affected by the time-

dependent shear modulus.

2. In the case of transverse compression, or in the case

where large transverse component appears, the mode change

during the deformation can greatly degrade the performance of

the composite.

3. Duhamel integral is performed numerically utilizing the

creep postbuckling step response of the composite panel and

it reveals obvious discrepancy with the quasi-static

solution.

.. q.
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Asymmetrical Growth of Edge Delaminations
in CFRP Tensile Specimens

Peter A. Klumpp and Eckart Schnack

Institute of Solid Mechanics, Karlsruhe University ( FR Germany

Quasistatic tension tests were carried out on special delamination spe-
cimens made from carbon fiber / epoxy using a PTFE foil as a start dela-
mination. The development of edge delaminations can easily be observed
by two modern optical techniques ( shearography and reflection
grating technique ) which are briefly described.
The observation of pointsymmetrical growth patterns indicates a microme-
chanical fracture mechanism of angleply/crossply ( ±O / 90° ) Interfaces
at the specimen edges. It is active only for one of the two delamination
tips which is arrested for certain small strain intervals. The result
suggests that edge delamination growth cannot be described sufficiently
on a macromechanical leel.

1. Introduction

A substantial part of fracture mechanical research in the field of car-

bon fiber/epoxy laminates has been dealing with the ply separations

known as delaminations ( Pagano and Pipes 1973, Relfsnider et al. 1977,

O'Brien 1984 ). If this damage mode appears in practice, e.g. after

buckling deformation, a catastrophic loss of bending stiffness may re-

sult on the respective machine part.

The effect of edge delamination in a tensile specimen can be demonstra-

ted in a quite spectacular way, but such experiments are generally not

representative for the conditions under which technical CFRP structures

are used and fatigued. This refers to the geometrical form of the struc-

tures, to the stacking sequencles and to the loading conditions.

On the other hand, delamination plays an important role in the typical

damage process which combines different fracture modes ( Reifsnider et

al. 1983 ). The analysis of the real fracture process is not only com-

plicated by the statistic features of the single modes, but also espe-

clally by their interactions. A satisfactory description will have to

comprise both micro- and macromechanical aspects of the Inhomogeneous

fiber/matrix composite; for example, it should be able to describe the

interaction of a proceeding delamination front with a matrix crack that

has developed independently in one of the adjacent plies. In view of the

complexity of this problem, the analysis of simplified model systems for

the different fracture modes becomes important. In the case of edge de-

lamination, they allow fundamental insights in nucleation and develop-

ment of the ply separation.
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In order to keep the interaction with the preceding fracture modes in

the specimen as small as possible, the specimen structure has to be cho-

sen in a way that prefers the transformation of the external load into

the driving force for the selected fracture mode. Edge delaminations are

favoured in stacking sequencles that develop high Interlaminar stress

concentrations at the edges of a tensile specimen ( Pipes and Pagano

1970. Pinchas and Plan 1979, Rohwer 1982, Herakovich et al. 1985 ) ; the

simplest case is a pure mode-1 fracture in the midplane of a symmetrical

specimen due to a high tensile stress concentration ( 'peeling stress' )

under tensile load of the specimen. Matrix cracking as a concurrent mode

can be restricted to high longitudinal strains using stacking sequencles

with small orientation angles ( e.g. 161 s 30* ).

2. Specimen design

A stacking sequency which is optimum for delamination experiments has

already been discussed in detail ( Pagano and Pipes 1973 ). The con-

struction principle is the combination of laminae with great and with

small Poisson numbers v known as 'Poisson mismatch' In a symmetrical ba-

lanced stacking sequency. These laminates are orthotropic in the speci-

men axis system, I.e. they show neither torsion nor shearing under lon-

gitudinal stress.

To give an Impression of the values of v realizable with a typical car-

bon fiber/epoxy system, fig. I shows the function v(O) = - c / c for

1.5 [els F
920C EZ=E

1,0

ve) EX

15 30 45 90

Fig. I

Poisson number for the laminates of the stacking sequency C±6]

,. . .'

L :... ' .,
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the laminates of the group [±e] We have calculated the curve using

classical laminate theory ( Jones 1975 ) for the case of pure longitu-

dinal stress in z-direction. The elastic moduli of the unidirectional

laminae stem from our measurements on the CFRP system 920 C-TS-5-34 ma-

nufactured by CIBA-GEIGY ( El = 117 GPa, E2 = 7.6 GPa, G2 Q 5 GPa, v 2
= 0.34 ). The specimens used in the experiments were produced from this

prepreg which assumed a thickness dL = 0.143 mm of the single lamina af-

ter curing at 125" C.

It Is obvious from fig. I that the Poisson mismatch will be maximum in a

laminate consisting of cross plies ( a = 90") and of angle plies with

i 0 = 25°.. .30. The ratio of the Polsson numbers falls to a minimum for

Y(90°}/P(27 ° ) a 2 : 130. If the cross plies are placed at the mldplane

and the angle plies on the outsides, the laminate shows a positive

stress concentration near the edges In the midplane under tension; the

cleaved halves will curve outward after separation C Pagano and Pipes

1973 ). It can be shown in the frame of classical lamination theory that

this curvature is proportional to the longitudinal strain if the curva-

ture is not restrained by the mechanical boundary conditions; the pro-

portionality constant can be used for estimates of the relative delami-

nation tendency of different stacking sequencles.

An optimum thickness ratio of both components in the stacking sequency

has been estimated for 8 = 25' ( Harris and Orringer 1979 ) ; for pro-

duction technical reasons we have chosen a nearly optimum 10-ply lamina-

te of the stacking sequency [(±30)2 90] with a longitudinal modulus of

E = 50.3 GPa for our experiments. It must be noticed that the matrix
2

cracks will appear on the first damage stage ( Reifsnider et al. 1983 )

at low strain levels In the 90*-plies of this laminate; they may influ-

ence the following delamination process.

Subjected to quasistatic tension, the chosen laminate shows spontaneous
complete edge delamination at a longitudinal strain of c a 0.85%.

C

...0.90%.; the index c stands for complete delamination. Our estimate

for the strain interval between nucleation and complete development is

Ac S 0.05% based on the observation of the 'delamination nuclei' which

were predicted with the energy release rate concept ( Wang and Crossman

1980, see also chapter 5 below ).

The process can be expected to proceed more continuously for dynamical

loading ( O'Brien 1982 ). In order to keep the loading apparatus simple
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120mm

Ii~i[ -- ~-- $.J20 mm

(47 
. 43 mmPT FE

Fig. 
2

Specimen design for the delamination experiments

and to achieve short testing times we have used a PTFE ('Teflon' ) foil

as start delamination In the midplane of the laminate ( Wang and Sloml-

ara 1982, Wang et al. 1985 ). These authors noticed that the small

strain interval between nucleation and complete development of edge de-

laminations is both shifted to lower strain levels and enlarged by a

symmetrical start delamination on both specimen edges. Moreover, only

one delamination develops on each edge. We have used foils of 45 im

thickness and lenghts t = 5 mm, 10 mm or 20 mm in specimens of widtho

b = 20 mm ( see fig. 2 ).

The start delaminations begin to grow visibly at c z 0.3%.. .0.4% and

reach the regions where their further growth Is restricted by the speci-

men end tabs at c a 0.60%...0.75%.; the mean value for c Increases for
c C

decreasing to . The crack tips leave the influence region of the PTFE in-

sert above e 2 0.45%, hence a strain Interval of Ac a 0.15%.. .0.3%

length becomes accessible In which a relatively undisturbed growth of

edge delaminations can be observed under quasistatic tension.

3. Interferometric defect detection

The surface deformation on the damaged tensile specimens can be measured

in form of the out-of-plane displacement field w(x,z) or its derivati-

ves. Several coherent and incoherent optical techniques are available

for displacement, inclination and curvature measurements; holographic

Interferometry ( Vest 1979 ), speckle Interferometry ( Jones and Wykes

1983 ) and shearography ( Hung and Taylor 1974, Hung and Liang 1979 )

are coherent optical methods using the Interference of laser wavefronts,

while moir6 techniques ( Sciamarella 1982 ) use the superposition of ma-

kl
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terial line structures with pitches down to the order of a light wave-

length ( Post 1983 ). The reflection grating method ( Ritter and Hahn

1983, Andresen et al. 1985 ) is related to the classical moir techni-

ques and works with diffuse incoherent white light.

The common result of these interferometric techniques is a fringe pat-

tern with Isolines of the measured variable. The effort for the quanti-

tative evaluation of this picture can be quite high. Useful methods are

for example the extraction of moir6 lines by suppression of the carrier

frequency ( De Haas and Loof 1966 ) and image digitalization with subse-

quent digital processing ( Krels 1980 ).

A direct mesurement of w(x,z) has the disadvantage that global deforma-

tions of the specimen like torsion or bending will appear superposed to

the local deformation field of the damaged region. They can be caused by

imperfect realization of the clamping conditions or an asymmetric growth

of the damage state. This effect reduces measurement precision for shape

and position of the damage zone, i.e. the position of the delamination

front. It can be reduced if the slowly variable global terms are diffe-

rentiated out in Interferograms of the inclination or curvature fields

of the object surface. Nevertheless, great care is necessary in con-

struction and realization of the tension loading apparatus for optical

NDT purposes in order to keep the global deformations as small as pos-

sible. We have found a solution by clamping one specimen end directly to

the machine frame, while the other one is pulled in a clamp guided by

means of a rugged precision translator stage that is mounted to the

frame ( fig. 6 below shows this machine ).

We have concentrated on two inc. ..atiuri measurement techniques measuring

aw/8x in our delamination experiments. They avoid the disadvantage of a

displacement measurement mentioned above. A second differentiation (i.e.

a curvature measurement ) seems not to be necessary according to our ex-

perimental results; it would be possible with a multiaperture interfero-

meter ( Sharma et al. 1984, Sharma et al. 1986 ).

The reflection grating technique indicates object surface inclinations

in real time in form of distortions of the virtual image of a material

grating with parallel black and white lines. This image is formed by re-

flection at the object surface. The surface must of course be specularly

reflecting in this case; this can be achieved on CFRP specimens by ap-

plicatlon of a thin epoxy film which is the replica of a flat glass sur-
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face ( Schltze 1985 ). The results of this procedure depend critically

on the preparation of the glass surface with a suitable parting compound

like PTFE spray.

The shearographic measurement technique ( Hung and Liang 1979 ) uses an

Involved storage and reconstruction process for Information encoded in

the stochastic Interference patterns appearing in diffusely reflected

laser light ( speckle patterns, see Dainty 1984 ). An efficient white

light reconstruction process has been described recently ( Klumpp 1989,

Klumpp and Schnack 1989 ). Up to now, holographic film with a resolution

of more than 1000 lines/mm served as storage medium.

Like the other coherent optical techniques, shearography is very sensi-

tive to In-plane object motions which ruin the contrast of the interfe-

rogram and must be restricted to less than some 10 #Am. This disadvantage

against the reflection grating technique necessitates a testing appara-

tus of higher precision, but on the other hand a coat of diffuse white

paint on the specimen surface is sufficient instead of an epoxy film

with smooth surface.

The resolution of both techniques is different In practical applicati-

ons. Fig. 3 shows the reflection grating setup, fig. 4 its realization.

(iuaspotlight
virtual ( grating illuminationimage )/

72L#/

4 _ T
grating

CFRP specimen
[ epoxy film

camera or

videocamera

Fig. 3

Setup for the reflection grating method

7 : " _'? -____________"__"_
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Fig. 4
Realization of the setup shown in fig. 3

If the grating constant ( distance dark line / dark line ) is denoted by
p and the distance object surface-grating by d, a fringe shift of N = 1

periods indicates an inclination angle aI of the object surface defined

by
tan 2a p / d (1)1

where laI << 1 allows the approximation

a p / (2d) (2)

With the values p = 0.65 mm and d = 165 mm used in the experiments the

angle a I corresponding to a fringe order shift of N = I results with

about 2 mrad ( a 0.1" ).

The corresponding formula for shearography can be derived from the rela-

tion between interference phase and displacement vector valid for holo-

graphic interferometry ( Hung and Taylor 1974 ). Fig. 5 shows the shea-

rographic camera, fig. 6 again its realization together with a suitable

tension testing apparatus. We can derive the following equation from the

basic relation between interference phase and measured variable aw/ax

( Hung and Taylor 1974 ) under assumption of pure out-of-plane displace-

ment of a plane object:

4W
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coherent light illumination

biprism film

image II
objctlens i.mage 11

bM

Fig. 5
Shearographic camera setup

Fig. 6
Realization of fig. 5, with high precision tension testing apparatus
on the let t ( i kN

a A/(a( I + ) ) (3)

where a denotes the Image translation ( = 'shearing' ) measured in ob-

ject coordinates, X the wavelength of the monochromatic laser light and

7 the incident angle of the object illumination. For typical values of 7

( , 30" ) the above formula can be approximated well by

a / (2a) (4)

For our experimental parameters of a = 3 mm and A - 0.633 gm, cc becomes

about 0.1 mrad { m 0.005* ). The Inclination resolution was hence higher

for shearography by a factor of 20.

-101 "
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Eqs. (2) and (4) for the resolvable inclination of the two techniques do

not indicate physical limits for I' The resolution of the reflection

grating technique can be decreased arbitrarily ( p 4 c ), but an upper

limit is set by the threedimensional distortion of the virtual image. It

can only be registered as a sharp real image with a registration system

( eye, camera ) of sufficient depth of focus, i.e. with a system of

small optical resolution. Therefore, the registration system for the In-

terferogram sets a lower limit for the ratio p/d In eqn. (2). The reso-

lution in shearography can be varied with the image shearing a. If a is

chosen too large, the first order approximation used for the derivation

of the measured variable 8w/Ox ( Hung and Taylor 1974 ) is no longer va-

lid and the Interferogram cannot be interpreted as an inclination map.

On the other hand, the shearing Ma In the image plane where M denotes

the image scale of the shearographic camera must be kept greater than

the diameter of the speckles ( Dainty 1984 ) generated in this plane.

These resolution restrictions suggest the use of both techniques accor-

ding to the magnitude of the measured inclination fields. Shearographlc

measurements were therefore performed at the inclination difference re-

sulting from a tiny strain increment of Ac = 0.006%.. 0.02% starting at

the actual c value In the tension test. The reflection grating technique

uses the flat initial state of the specimen as reference and measures

hence the absolute inclination of damaged regions at longitudinal

strains of c = 0.3X.. .1%; the resulting image is visible in real time,

but Its quantitative evaluation is difficult.

The double exposure shearograms must be chemically developed before re-

construction, but the resulting Interferograms can be evaluated directly

In terms of lines of constant inclination change. A reflection grating

technique using double exposure which shows lines of equal inclination

as moIr6 fringes is also possible ( Ritter and Hahn 1983 ). The problem

with this technique Is that the deformed grating lines in the two virtu-

al images must be well-focused in order to yield an evaluable molr6 su-

perposition; furthermore, the measuring range Is limited by the restric-

tion of the moir6 line density to a fraction of the grating line density

i/p ( see fig. I ).

4. Remults

Fig. 7 shows a series of reconstructed shearograms from a quasistatic

delamination test, fig. 8 the same experiment monitored with the reflec-
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tion grating technique. In both cases, the growth of the two mirror-

symmetrical initial defects could be observed clearly. Deviations from

the initial symmetry to the x and z-axis ( see fig. 2 ) were first ex-

plained by statistical influences of the material microstructure on the

fracture process. The diagram in fig. 9 shows the delamination lengths

SD(c) measured on shearograms for three specimens, i.e. six delamina-

tions. All curves start at D (e=0) = to = 20 mm defined by the dimen-

sions of the PTFE insert; a precision of ± 0.5 mm was assumed for the

position measurement of the delamination tips on the specimen edges. De-

laminations with f ; 60 mm were defined as total delaminations for0

which a common value of t = 60 mm was assumed. The interval of free de-
D

lamination growth is about 0.45% < v < 0.60%. The diagram shows clearly

statistical deviations between the individual delamination processes.

77->-;', 'El
to :20mm -O7...

111110
E - 5.3%.. (- 7% 1 6

Fig. 7
Delamination growth under quasistatic tension
shearographic observation

Apart from these deviations, the scheme shown in fig. 10 gives a quali-

tative characterization of our experimental observations averaged over

10 tension tests. The point symmetrical growth pattern was already ob-

served just before complete delamination in figs. 7 and 8; fig. II shows

an example for the typical drop shape at 'n advanced delamination state

c - 0.57% ). The different 1 values u. the tuo delaminations ( 49 mm

and 33 mm, respectively ) illustrate the statistical deviations plotted

In fig. 9.

2" ' •. -# '
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c= 0,25% E=0,32% E=0,49% E= 0,59% c= 0,62%

Fig. 8
Delamination growth under quasistatic tension
reflection grating observation

I Dmm
60 D-37

50 [i_±30)2 901,s-0D4
40 90 C D-40

30

-- 7 C [%o]4 5 6' E,.

:'=" £ c -"
Fig. 9
Delamination length as function of longitudinal strain for three
specimens

A striking asymmetry is visible on the photo of the edge of a specimen

after complete delamination ( fig. 12 ); the edge was painted white be-

fore the tension test in order to improve contrast. Near the start dela-

mination visible at the center of fig. 12, the laminate has split into

two 5-ply parts E(±30) 2 90] and (90 (;30) 3. Outside this start region,

F: "2

• ' -x , ,
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the delamination develops from a pure mode-i crack at the (90*/90')-

interface into a mixed-mode crack at the two (-30°/90*)-interfaces which

are obviously preferred by energetical reasons ( O'Brien 1984 ). The

crack appears as a straigth line on the right hand side of fig. 12. We

have also observed stepwise straight crack courses in this position on

other specimens ( see fig. 13 ). Contrarily, the crack wiggles between

both interfaces on the left hand side of fig. 12. The growth in this di-

rection was found to be retarded relative to the other direction ( see

fig. 10).

" ,fiber direction

8 III O-30

Fig. 10
Scheme for the average delamination growth

Fig. 11
Delaminations of drop shape at e = 0.57% C shearogram

Fig. 12
Specimen edge showing the course of a complete delamination

Fig. 13
Stepwise straight delamination course observed at specimen edge

' X
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Fig. 14
Shearogram showing delamination front retardation at the specimen edge

-4
4o=Smm

Fig. 
15

C-Scan of edge delamination

We can conclude that the delamination growth in the (-30°/90°)-interfa-

ces shows a significant asymmetry between the two growth directions

along the specimen edge. It appears retarded in the direction where the

fibers hit the edge under an obtuse angle ( = 150 °, see fig. 10 ),

while it develops faster in the direction where 0 = 30° Is an acute an-

gle.

This suggests a micromechanical interaction between crack tip and angle

ply fibers at the specimen edge. Hints for a model of the mechanism came

from shearographic and ultrasonic inspection of the delamination tips

with A = I50°. Fig. 14 shows a shearogram of a delamination where the

fringe at the left crack tip curves backward ( - ). This indicates that

the crack has been arrested at the edge while it was able to proceed

further in the region one or two millimeter- below. Fig. 15 shows the

C-scan of another delaminated specimen with two edge delaminations of

quite different I ( courtesy Dr. H. Eggers, DLR Braunschweig, West Ger-0

many ). Though the resolution is not optimum, an indentation ( 4 ) is

visible in the crack front on the left hand side about I mm away from

the specimen edge. An x-ray test with contrast enhancement of the same

specimen gave no indication of this irregularity.
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f ibers 011

30 delaminat ion 'Jl

b

Fig. 16
Model for the crack tip arrest mechanism at a (-30°/90°)-interface

Our model for the arrest mechanism is shown in fig. 16. Obviously, the

crack can penetrate into the -30-layer from the (-30O/90°)-interface

fig. 16a ) without breaking fibers if it runs in the direction with

= 150 ° , while it cannot for the opposite direction. After a small

crack has developed along the fiber direction ( figs. 16b and 16c ), the

tip is arrested. The stresses responsible the crack development decrease

with the distance of the crack tip from the (-30°/90°)-interface ( Roh-

wer 1982 ), and the crack in its form can only return to this interface

by means of fiber breakage. Hence the crack development contirues at the

point A where the tip moved into the angle ply ( fig. 16d ). The stres-

ses at this point were relieved by the crack nearby; the crack will con-

tinue only after some strain increment. This stress reduction may also

--4_...lllIlI m
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be the reason for the tendency of the new tip to move to the otherI
(-30"/90*)-interface where the same trap process is repeated ( wiggled

course In fig. 12 ). The modeled mechanism will retard the delamination

development in one direction, while it is not active in the other one.

It should be added that a change between both (-30*/90*)-interfaces is

easily possible for the delamination at matrix cracks of the two 90*-

plies. This explains the observation of fig. 13. The effect is present

in both growth directions along the laminate edge, but it cannot be ob-

served within the wiggled course in the direction with retarded growth.

S. Experiments with other stacking sequencies

The results described above raised the question whether asymmetrical

growth is also observed in the laminate [(±9) 2 90], for 6 * 30
° . We have

tested specimens with 0 = 150 and e = 45* using the reflection grating

method and found clear evidence for asymmetrical growth in both cases.

This result was expected from the postulated arrest mechanism; because

of strong statistical deviations of the individual fracture processes,

we cannot give any estimate of the relative strength of the effect for

the three cases 6 = 15', 30, 450.

We have further tried to extend the tests to stacking sequencles that

are more relevant for technical applications than ((±9)2 90] . The group

of symmetrical quaslisotropic laminates has often been used for fracture

mechanical research ( Whitcomb and RaJu 1985, Masters and Reifsnider

1982, Reifsnider et al. 1977 ). The delamination tendency under tension

of 8-ply quasilsotropic laminates depends on the exact stacking sequen-

cy. Out of the 12 possible nonequivalent sequencies, [±45 0 90]. shows

the strongest delamination tendency and was hence chosen for tension

tests with and without PTFE Insert.

Fig. 17 shows the delamination of a specimen without start delamination.

As In the case of the laminate [(±30) 2 90] , spontaneous complete dela-

mination Is observed. At c = 0.83%, no delamination is visible; the edge

delamination that has opened after the strain was increased by Ac =

0.02% to c = 0.85% has grown further Into the specimen at e = 0.89%.
C

Small delamination nuclei of about 0.5 mm width ( theoretical prediction

by Wang and Crossman 1980 ) can now be seen at the right specimen edge (

). They indicate that a delamination of the right edge is Imminent for

further strain increments. The same stacking sequency prepared with a

llllnmll ll lln
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PTFE insert shows continuous delamination growth ( fig. 18, to = 10 mm).

Asymmetries were not observed because of the mirror symmetry of

the (0"/90")-interfaces ( = * and R = 180' are equivalent ).

This result suggests that the experiments described in chapter 4 can be

extended to more general stacking sequencles; the start delamination

realized by a PTFE insert is a useful tool to initiate a relatively con-

t-nuous delamination growth under quasistatic tension.

E=0,83% E=0,85% E=0,89%

Fig. 17

Spontaneous delamination of the laminate [+45 0 90] without PTFE inser

Fig. 18

Continuous delamination of the laminate [±45 0 90] with PTFE insert

Sc = 0.89%
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6. Conclusion and Acknowledgements

Quasistatic tension experiments on CFRP laminates of the stacking se-
quency [(±) 90], with a PTFE insert acting as a start delamination

2

should maintain the initial mirror symmetry In the growth pattern, if

the fracture process of the anisotropic material is considered on macro-

mechanical level. Our experimental observation of point symmetrical

growth patterns In (e/90°)-interfaces for a = ±15°.. .±45 ° indicates a

micromechanical Interaction of the delamination tips with the fiber ends

at the laminate edge. A model for this effect that retards the growth

in one of the possible two directions at the edge has been postulated.

Though this effect will be less prominent in technical applications of

CFRP structures, its observation suggests that a purely macromechanical

description of the real delamination process ( e.g., by the energy re-

lease rate concept, Wang and Crossman 1980 ) will remain insufficient.

Two modern optical techniques have been used for the observation of the

delamination growth. Both have proven to be reliable and fast NDT tools.

They can be used directly with the tension loading system, If the gui-

dance of the specimens is sufficiently precise; shearography requires

more effort in this respect than the reflection grating method.

The authors are grateful to the students M. Heizelmann, A. Majorek and

H. Tomanek for their contributions to this work. The same applies to the

German Research Community ( DFG ) for the support of important prepara-

tory work by the contract Schn 245/2-1/2 KERB-FASER.
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Matrix Mean-Field and Local-Field
Approaches in the Analysis of Metal
Matrix Composites

Jacob Aboudi

Marek-Jerzy Pindera2

Abstract
A micromechanical investigation of the inelastic response of metal matrix

composites analyzed by two different methodologies is presented. The first
method is based on the mean stress field in the entire ductile matrix phase, while
the second one is based on the local stress field. The present study is a continua-
tion of a previous investigation in which a micromechanics model based on a
periodic array of fibers was employed to generate yield surfaces of metal matrix
composites using local and mean matrix stresses. In this paper, we extend the
aforementioned analysis to the prediction of the inelastic stress-strain response
of metal matrix composites subjected to different loading histories. Results for
the overall elastoplastic response of the investigated metal matrix composites
indicate that the mean-field approach may lead to significant deviations of the
effective composite behavior as compared either to finite element results or
measured data. The predictions of the effective composite response generated
by the two approaches are compared with experimental and numerical data on
unidirectional boron/aluminum and graphite/aluminum.

Introduction

In a previous investigation, Pindera and Aboudi (1988) discussed the use of
average matrix stress in determining initial yield surfaces of metal matrix com-
posites. Specifically, the micromechanics model proposed by Aboudi (1986)
was employed to generate initial yield surfaces of unidirectional and multidirec-
tional (cross-ply) boron/aluminum laminates under a variety of loading condi-
tions using two different approaches. In the first approach, overall yielding of

'Pridasor and Dean, Faculty of Engineering, Tel-Aviv University, Ranat-Aviv 69978, Israel
2Asta Professor, SEAS, University of Virginia, Chadouesville, VA 22903, USA
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the composite was assumed to take place when the yield condition in the matrix

phase was fulfilled locally in one of the matrix subcells of the representative

volume element (RVE) used to model the composite. The von Mises criterion

was the choseq yield condition. The yield surfaces generated in this fashion

correlated very well with finite element predictions obtained by Dvorak and co-

workers (1973, 1974) for most loading directions. In the second approach, initial

yielding of the composite was assumed to occur when the average stress in the

entire matrix phase was fulfilled. Comparison of the initial yield surfaces gen-
erated in this fashion with the corresponding predictions based on local matrix

yielding and finite element analysis illustrated that significant differences may

occur in the predicted surfaces for certain loading directions. In general, the ini-

tial yield surfaces obtained on the basis of the average stress in the entire matrix

phase predicted higher overall yield stresses than those obtained on the basis of
local matrix yielding. For certain other directions however, the use of the aver-

age matrix stress in calculating overall yield surfaces appowrld i be a good

approximation.

In the present paper, we extend the aforementioned micromechanical

investigation to the prediction of inelastic response of metal matrix composites

using the two different approaches to calculate inelastic strains in the matrix

phase. The investigation is motivated by the recent development of approximate

three-dimensional micromechanical models for the initial yielding and inelastic

response of metal matrix 'composites based on the assumption that the entire

matrix phase is uniformly strained (Wakashima, et al. (1979), Pindera and

Herakovich (1982), Dvorak and Bahei-El-Din (1982)). In such models, the

effect of local stresses is neglected, and yielding and subsequent inelastic

response is thus governed in the first approximation by the average stress in the

matrix. The present investigation was undertaken to quantify the effect of this

assumption on the elastoplastic response of two types of metal matrix compo-

sites under selected loading paths using a micromechanics model whose predic-

tive capability has been demonstrated in ptevious investigations (see Aboudi

(1989) for a recent review).

It is shown that the use of the mean-field stress in the matrix phase to com-

pute the effective behavior of metal matrix composites may produce results that
significantly deviate from the response based on a more rigorous basis, and may
lead to erroneous conclusions.
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Micromechanics Model

The micromechanics model is based on the analysis of a RVE of a doubly

periodic array that consists of a fiber surrounded by three matrix subcells, Fig-
ure 1. The fibers are parallel to the I - direction and the plane of isotropy is the 2
-3 plane. Approximate analysis of the deformation and stress fields in the RVE

yields closed form expressions for the effective response in terms of the consti-
tuent properties and geometry of the phases (Aboudi (1987)). Specifically, a

first order (linear) displacement expansion is employed in each of the subeells
which is sufficient for the extraction of the effective or average stress-strain

equations for the composite. Continuity of tractions and displacements across
the boundaries of the individual subcells of the RVE is imposed in an average

sense in the course of generating the effective stress-strain curves. Due to the
geometric arrangement of the fibers, the isotropic behavior in the transverse (2 -
3) plane is enforced through an averaging process. The availability of closed

form expressions ensures ease of programming and manageable computation

times for modeling both material and structural response of composites. Incor-

poration of different constitutive models for the response of the individual

phases is also readily accomplished for the same reason.

The micromechanical analysis of stress and deformation fields in the RVE

yields the following form of effective, elastoplastic stress-strain-temperature

equations for a unidirectional, transversely isotropic fiber-reinforced composite:

o=E(e- )- UAT (1)

which are referred to a Cartesian coordinate system (xI, x 2 , x 3,) where x, is

aligned with the fiber direction.

In the above,

F= [(71, 022' 033, 012, 2 13, 0 23 (2)

is the average stress;

E CI It E122, C33, 2i12t 2e139 2i23 ](3)

-_PL
is the average total strain, with the plastic strain e having the same form as e,

and;

iL
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Flgure 1. D)oubly periodic array of fibers (aand the associated representative
volume element (b).
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ell e12 e12 0 0 0

e2 e23 0  0 0
e22 0 0 0

E e44 0 0 (4)

sym e44 0
e66

where ei, ar the five effective elastic constants of the composite (with

e6 = 1/2 (e2 - e23 )) which are given explicitly in terms of the elastic stiffness
elements Cl and Cfj of the matrix and fiber phases and their volume fractions,
c,,, cf = I - c,, by Aboudi (1987). That is,

It can easily be verified that the predicted effective moduli for many unidirec-

tional composites are in excellent agreement with those computed using elasti-

city analysis (Pickett (1968), Chen and Chang (1970) and Behrens (1971)).
Furthermore, the effective transverse shear modulus of a unidirectional
glass/polyester composite predicted using the present micromechanics approach

coincides with the corresponding modulus computed on the basis of the three-
phase model (Christensen (1979)). This is a significant result since the predic-
tion of the transverse shear modulus or, equivalently, the transverse Young's
modulus of unidirectional composites provides a critical check on the validity of

a micromechanics model in the elastic region.
-PL

Similarly, the effective plastic strain e can also be expressed as:
e•L = --PL(Cm, Cf, cf, L(") (6)

where L" are the plastic strain components in the individual matrix subcells

(", Figure lb. The effect of thermal loading on the composite stresses is

represented by the quantity U AT, where AT is the applied temperature change
and U depends on the properties of the phases in the following fashion :

U = U (C0, cfj, , ,O;, cf ) (7)

where c6 and af are the coefficients of thermal expansion of the matrix and

fibers, respectively. The explicit expressions for E, e,'L and U in terms of the

properties of the phases are not given here because they are too lengthy and

have already been provided in previous papers (cf. Aboudi (1987, 1989)).

'7.>.
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In the present investigation, the unified theory of plasticity proposed by
Bodner and Partom (1975) was employed to model the constitutive response of

the matrix phase. Let S" represent the average stresses in the subcell (0,6. The

local rate of plastic strain in a given matrix subcell is expressed as :

where are the components of stress deviators and A"p) is the flow rule

function of the matrix phase. The explicit form of the flow rule function for the

matrix is given by:

A" =Do exp [-A [Z&/(Mr)]") / rF (9)

where A = 0.5 (n + 1n and Jr =l ij is the second invariant of the

local matrix subcell stresses. Do and n are inelastic parameters, and Z" is a

state variable given by :

Z~ft =Z, + (Zo-Z) exp [-m WV /Zo] (10)

where Wf is the plastic work per unit volume.

The five parameters Do, ZO, Z1 , n and m in Equations (9) and (10) have the

following physical meaning. The parameter Zo is related to the "yield stress" of

the material in simple tension and Z, is proportional to the ultimate stress. The

material parameter m determines the rate of work-hardening and the rate sensi-

tivity of the material is controlled by the material constant n. It should be noted
however, that the results of numerical experiments indicate that, with n = 10, the

response is essentially rate independent for strain rates less than lO/sec. Finally,
Do is the limiting strain rate and usually can be arbitrarily chosen as
Dv1 = the4 sec.

Equation (8) is the flow rule for the plastic strains in the individual subcells

of the matrix phase. Alternatively, a flow rule based on the average stress in the

matrix phase can be formulated as follows. Let us define the average stresses in

the matrix constituent in the form:
--(m) S(12) .q21

V [V 12 8J + V2 1 S "+V22 SI(v 2 i +V21+ ) (11)

where v12, v21 and v22 are the volumes of the matrix subcells (i.e. vii = hihj).

The flow rule based on the average matrix stress that is the counterpart of Equa-

tion (8) thus becomes:

Al /.
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L3+y=A(m)aj , *2 (12)

I _ ~(m) ._

where oij are the stress deviators of oi, , and A(,) is the flow function of the
• -(n)

matrix based on the average stresses aij . Thus A(,,) is given by Equation (9)
1 "() t,(-)

but with J' =-crij ij , and;

Z(.) = Z, + (ZO - Zj) exp [-m W" ) / Z0 ] (13)

We note that Equation (12) implies that LP)2 = L(2) = LM, contrary to the pre-
vious formulation given by Equation (8) in which the plastic strains in the

matrix subcells are independent of each other.

Analytical Results

Stress-strain curves of two types of unidirectional metal matrix composites

have been generated using the local-field and mean-field approaches outlined in

the preceding section for loading by different combinations of externally applied

stresses. In particular, the response to loading by longitudinal and transverse
normal stresses, longitudinal shear stress and axisymmetric normal stresses

applied separately in the principal material coordinate system was investigated.
The response to combined stresses was also investigated by considering the

stress-strain behavior of off-axis specimens. The generated results are subse-

quently compared with numerical calculations based on the finite element

method and experimental data obtained by various investigators.

Figures 2 and 3 present the stress-strain response of unidirectional

graphite/aluminum (T-50/2024-T4) composite (0.3 fiber volume fraction) under

externally applied transverse normal (a22) and longitudinal shear (a 12 ) stresses,

respectively. In Figure 2, the response based on the mean-field and local-field

approaches obtained from the micromechanics model is presented, while Figure

3 also includes the fimite element solution of Hashin and Humphreys (1981).
The material parameters of the fiber and matrix phases employed to generate the

curves are given in Table 1. In the case of the transverse response, Figure 2, it is

evident that the mean-field approach significantly overestimates the initiation of
yielding and, in turn, produces plastic strains that deviate significantly from

those obtained using the local-field approach. In the case of the longitudinal

shear response, on the other hand, there is little difference between the predic-

tions based on the two approaches in the considered range of strains. It is

interesting to note that the results obtained with the more rigorous finite element
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Figure 2. Transverse response of a TSO/2024-T4 graphite/aluminum.

Materia EA (GPa) Er (GPa) GA (GPa) VA wr
T-50 graphte 388.2 7.6 14.9 0.41 0.45

atera E (GP&) v Do' (-e) Z0 (mpa) Z, (Mpa) m n

2024-T4 aluminumn 72.49 0.33 li04 340 435 300 10

Table 1. Material parameters of graphite fibers and aluminum matrix.
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Figure 3. Longitudinal shear response of a TSO/2024-T4 graphiteialuminum.

technique are not significantly different from the results generated with the
present micromechanics model.

The results for the transverse normal and longitudinal shear -esponsc of

unidirectional boron/aluminum (0.5 fiber volume fraction) are prese:,ted in Fig-

ures 4 and 5, respectively, using the material parameters given in Table 2 and

noting that the aluminum matrix was assumed to be elastic perfectly-plastic. In

this case, the results obtained with the micromechanics model usivg the local-

and mean-field approaches are compared with the fmite element solution

obtained by Foye (1973) for both loading situations. We note that as the finitr
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Figure 4. Transverse response of a boront/aluminum composite.

Material E (GP&) v

Boron fibers 413.7 0.20

Materia E (GPa) v D i (sec) Zo (MP&) Z, (MP&) m n

Aluninum 55.16 0.30 10-4 103.42 103.42 - 10

Table 2. Material parameters of boron fibers and aluminum matrix.
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Figure 5. Longitudinal shear response of a boron/aiuminum composite.

element solution has been generated for a square array of fibers, the averaging
procedure outlined by Aboudi (1987) to obtain the effective response of a

transversely isotropic continuum has not been applied in this case. The correla-
tion between the transverse response obtained with the finite element analysis
and the micromechanics model based on the local-field approach, Figure 4, is

very good. The prediction of the micromechanics model based on the mean-
field approach presented in the same figure is drastically different from the

latter. The deviation in this case is significantly more pronounced than in the

transverse response of graphite/aluminum illustrated in Figure 2. Similar obser-
vations can be made regarding the longitudinal shear response, Figure 5, which
can be contrasted with the longitudinal shear response of graphite/aluminum

given in Figure 3. It appears that the extent of deviation between the results

obtained on the basis of local-field and mean-field quantities depends on the
mismatch in the elastic properties of the constituent phases and possibly on the

work hardening of the aluminum phase.

The predictions of the micromechanics model have also been compared

with the experimentally generated results obtained by Pindera, et al. (1989) for

unidirectional boron/aluminum composite (0.46 fiber volume fraction) whose



772

Material E (GPa) v a (/ OC)

Boron fibers 400 0.20 S.0l- I

Material E (GPa) v a Q(1C) Do (sec) Zo (MPs) Z, (MPa) m n

Aluminum 72.5 0.33 23.& 10-6 10r 100 190 70 10

Table 3. Material parameters of boron fibers and aluminum matrix.
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constituent properties are given in Table 3. The longitudinal and transverse

response in tension and compression obtained from the 00 and 900 specimens is

illustrated in Figure 6. The figure gives the comparison between the analytical

predictions based on the two approaches and the measured data. It can clearly be

observed that the mean-field prediction significantly underestimates the extent

of plastic flow in the case of the transverse loading. The longitudinal response,

on the other hand, is predicted with sufficient accuracy by the two approaches.

This is not surprising since it has been shown by Mulhern, et al. (1967) that the

longitudinal response of an elastoplastic composite can accurately be predicted

by assuming that the entire matrix phase yields uniformly (cf. Hill (1964)). It

should be noted however, that a true measure of a micromechanics model's

predictive capability is given by the accuracy of the prediction for the matrix

dominated response such as transverse or shear behavior. Thus it can be con-

cluded that the mean-field approach is not useful in this particular case.

The off-axis response of 100, 150 and 450 boron/aluminum composite dis-

cussed above is given in Figure 7, where comparison between the measured data

and the two micromechanics approaches is shown. The dramatic differences

between the predictions based on the local-field and mean-field calculations are

clear. Whereas the local-field predictions correlate very well with the experi-

mentally observed behavior, the mean-field data exhibits unacceptably large

deviations. It should be noted that the state of stress in the principal material

directions of the employed off-axis specimens includes significant transverse

normal and axial shear stress components. These stresses result in a matrix dom-

inated response of the composite (either in shear and/or transverse tension).

The last example deals with the response of unidirectional boron/aluminum

composite subjected to axisymmetric loading by the longitudinal stress cyi and

all-around transverse stress C22 = (T33. The material parameters for this compo-

site, used in the calculations, have been provided in Table 3. Initial yield sur-

faces for this composite were generated for the following two cases : AT = 0 and

AT = 60*C. The resulting predictions based on the local-field and mean-field

matrix stresses are given in Figure 8. The axes in the figure have been normal-

ized with respect to the yield stress of the matrix in simple tension, Y = 84 MPa.

It can be seen that the prediction based on the mean-field approach results in an

open yield surface in the direction along which no yielding takes place. This

direction is denoted by arrows in the figure and is determined by requiring that:
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Figure 7. Off-ais response of a boron/alumilnumi composite.

(711 - 22 = C33 (4

The above relation ensures that the matrix is under a hydrostatic state of stress
which produces no yielding in the case of the von Mises criterion employed to
generate Figure 8. The explicit expression for this direction in the case of no
temperature change was given by Pindera and Aboudi (1988). Thermal loading

I -I



775

/I

ATz 0

(a8

-8 -4 /4 4 8

-- 4

(a))

4-

FiueSinta il ufcso ornauiu ne xsmerclaig



776

1600-

1400-

1200-

1000-

0800-

lb 600-

400-

ATo 0200-
AT60C-------- AT ,, 600C

0 L LJ
0.96 0.98 1 1.02 1.04

1000- -' t"oLCaL average

(CO)
800-

600-
N

0
098 1 1.02 104 1.06

?2 22 jLocaj///E22 I aerage

(b)
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translates the initial yield surface but does not change the direction along which

yielding does not occur if the mean-field approach is used. It can be shown that

for the considered boron/aluminum composite, the following relation can be

established in conjunction with Equation (14):

all = 2.59710 AT + 1.513 C2 (15)

which provides the necessary condition for axisymmetric and thermal loading

such that no yielding takes place.

Another pronounced difference between the local-field and the mean-field

approach is illustrated by the temperature change at which the composite yields

in the absence of any external mechanical loading. For the considered compo-

site, the temperature changes calculated on the basis of local-field and mean-

field matrix stresses that result in yielding of the composite are

AT = 63.70 and 100.9°C, respectively. The difference in the temperature

changes predicted by the two methods may have pronounced effect on the sub-

sequent elastoplastic response of the composite. For the case of axisymmetric
loading given by Equation (15), the Jastoplastic response of the composite is

illustrated in Figure 9 for AT= 00 and 60*C. The figure gives the normal

stresses as a function of normal strains calculated using the local-field approach,

normalized with respect to the corresponding normal strains calculated using the

mean-field approach. The arrows in the figure indicate the initiation of yielding

and plastic flow which are not present in the response obtained using the mean-

field matrix stresses for this loading situation. As is clearly seen, thermal load-

ing plays a significant role in the differences between the responses obtained by

the two methods. As expected, this difference is considerably greater for the

transverse response component than the longitudinal component.

Conclusions

The results of the present investigation indicate that the use of the average

stresses in the matrix to generate yield surfaces and subsequent elastoplastic

response of metal matrix composites may lead to significant deviation from the

behavior predicted on the basis of local matrix stresses. The extent of deviation

depends on the direction of loading and the mismatch in the material parameters

of the constituent phases. This was established by comparison with numerical

and measured data. The effect of residual stresses produced by temperature

changes in the case an axisymmetric loading magnified the extent of the

9-
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deviation between the elastoplastic responses obtained with the two methods.
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